IN HIS NAME

Mathematics Department Scholastic Year :2015- 2016

Date:

Duration: 150 min Mark: 40 points

Grade 11(Sc)

Name:

Mid-Year Exam

Questions		Answers	Note
I-(5pts)	1)	$P = -m^2 - 5 = -(m^2 + 5) \le 0 \text{ for } x \in \mathbb{R}$ (C)	1
	2)	Let $t = x^3$, $t^2 - 5t + 4 = 0$, $t_1 = 1$ and $t_2 = 4$ then $x_1 = 1$ and $x_2 = \sqrt[3]{4}$ (A)	1
	3)	$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 - 3x + 1} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(x - 1)(2x - 1)} = \lim_{x \to 1} \frac{x + 2}{2x - 1} = 3 $ (C)	1
	4)	$f(1) \times f(2) < 0$ then $(3m-2)(8m+1) \le 0 \dots m \in \left] -\frac{1}{8}; \frac{2}{3} \right[$ (B)	1
	5)	$f'(x) = 2\sin(x^2)2x\cos(x^2) = 2x\sin(2x^2)$ (A)	1
II-(3pts)	1.a)	$\Delta \ge 0, \ m^2 + 5m + 4 \ge 0, \ m \in]-\infty; -4] \cup [-1; +\infty[$	1
	1.b)	$S = -2(m+2)$ & $P = -m$, $2S - P + 8 = m^2$ then $m(m+3) = 0$, $m = 0$ (accepted) & $m = -3$ (rejected)	1
	2)	f is defined over \mathbb{R} $x^2 + 2(m+2)x - m > 0$ for $x \in \mathbb{R}$, then $\Delta \le 0$ $m \in [-4;-1]$	1
III- (3pts)	1)	• $-1 \le -\cos x \le 1$ then $1 \le 2 -\cos x \le 3$ then $x + 1 \le x + 2 -\cos x \le x + 3$ • $x + 1 \le f(x)$ then $\lim_{x \to +\infty} f(x) \ge \lim_{x \to +\infty} (x + 1) = +\infty$ then $\lim_{x \to +\infty} f(x) = +\infty$	1 1
	2)	$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x) = 1 \text{ then } f \text{ is continuous at } 0$	1
	1)	$U_1 = \frac{8}{3} \& U_2 = \frac{28}{9}$	1/41/
	2)	$U_1 - U_0 \neq U_2 - U_1 & \frac{U_1}{U_0} \neq \frac{U_2}{U_1}$ then (U_n) is neither arithmetic, nor geometric	1
	3.a)	$\frac{V_{n+1}}{V_n} = \frac{U_{n+1} - 3}{Un - 3} = \frac{\frac{-1}{3}Un + 4 - 3}{Un - 3} = -\frac{1}{3}, \text{ then } (V_n) \text{ is a geometric sequence with}$	11/2
		common ratio $r = -\frac{1}{3}$ and the first term $V_0 = U_0 - 3 = 1$	
IV-(5pts)	3.b)	$V_n = V_0 \times r^n = \left(-\frac{1}{3}\right)^n$	1
		$U_n = V_n + 3 = \left(-\frac{1}{3}\right)^n + 3$	
	3.c)	$S_n = V_0 \times \frac{1 - \left(-\frac{1}{3}\right)^{n+1}}{1 + \frac{1}{3}} = \frac{3}{4} \left(1 - \left(-\frac{1}{3}\right)^{n+1}\right)$	1
		$\begin{bmatrix} S_n - r_0 \wedge \\ 1 + \frac{1}{3} \end{bmatrix} = 4 \begin{pmatrix} 1 & (3) & $	
		$T_n = S + 3(n+1) = \frac{3}{4} \left(1 - \left(-\frac{1}{3} \right)^{n+1} \right) + 3(n+1)$	

		1)	$I(2;-1) \& R = \sqrt{5}$	1
V-(4pts)		2.a)	$x_A^2 + y_A^2 - 4x_A + 2y_A = 0$ or $IA = \sqrt{5}$, then $A \in (C)$	1/2
		2 1	(T) tangent to (C) at A there (T) I (TA)	
		2.b)	Let $M(x, y) \in (T)$ then $\overrightarrow{AM} \cdot \overrightarrow{IA} = 0$, $(x-3) + 2(y-1) = 0$, (T) : $x + 2y - 5 = 0$	1
		3)	(d) tangent to (C) then d (I, (d)) = $\sqrt{5}$ $\frac{ 2+1+b }{\sqrt{2}} = \sqrt{5}$ $b = -3 + \sqrt{10}$ or $b = -3 - \sqrt{10}$	11/
-				
			f admits at $x = -3$ a local maximum, then $f'(-3) = 0$.	1/2
		1)	$f'(0) = $ slope of tangent to (C) at $D = \frac{2}{0.5} = 4$	1/
			f'(2) = slope of tangent to (C) at E = slope of the straight line of eq. (y = -x) = -1	1/2
VI-(6	pts)	2)	$-2 \in D_f \& (C)$ admits two semi-tangents at $(-2; 0)$, then f is not differentiable at $x = 2$. The	1/2
3)			-2. The curve is not cut at $(-2; 0)$ then f is continuous at $(-2; 0)$	1/2
			$(1)^{1/2}$ (d), then slope of $(1) = -1$ and $E(2; 2) \in (T)$ then $(T): y = -x + 4$	1
		4.a)	$I(x) \neq 0$ Then $D_h = [-\infty; -4[\cup [-4; -2[\cup [-2; 1] \cup [1; +\infty]$	1
		4.b)	$h'(0) = \frac{-f'(0)}{f^2(0)} = \frac{-4}{4} = -1$	1
	A	.)	$f(2) = -4$ and $f'(2) = -9$ $\begin{cases} 4a + b = -1 \\ 2a + b = -9 \end{cases}$ $a = -1$ & $b = 3$	11/2
		1)	$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to +\infty} f(x) = -\infty$	1/2
			$f'(x) = -3x^2 + 3$. $x - \infty - 1$ $1 + \infty$ $f'(x) - 0 + 0 -$	11/2
		2.a)		
			$f(x)$ $+\infty$ 0	
		2.b)	$(-x-2)(x-1)^2 = -x^3 + 3x - 2 = f(x)$	11/
			$f(0) = -2 \dots \text{the intersection with y-axis} : (0, -2)$	1/2
		2.c)	$f(x) = 0$ $(-x-2)(x-1)^2 = 0$ $x = -2$ or $x = 1$ the intersection with x-axis: $(-2, 0)$ and $(1, 0)$	3/4
VII-		3)	$f(2x_1 - x) + f(x) = f(-x) + f(x) = -4 = 2y_1$ then I is the center of symmetric of (C).	1
9pts)		4)	$f(x) = -x + 2$, $(-x - 2)(x - 1)^2 = -x - 2$, $x \in \{-2, 0, 2\}$ then $(-2; 0)$, $(0; -2)$, $(2; -4)$	1
	B)	5)	(L) 2 3 4 5 -4 -3 - 1 0 1 2 3 4 -2 1 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/2
		6)	$f(x) > -x - 2$ (C) is above (L). $x \in -\infty; -2[\cup]0; 2[$	3/4

VIII- (5pts)	1)	$\cos\left(\frac{2\pi}{5}\right) = 2\cos^2\left(\frac{\pi}{5}\right) - 1 = \frac{-1 + \sqrt{5}}{4}$	11/2
	2.a)	SIN(ZX) ZSIN X COS X ZSIN X COS X	11/2
	2.b)	$\tan\left(\frac{\pi}{12}\right) = \frac{1 - \cos\left(\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{6}\right)} = \frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 - \sqrt{3}$	1/2
		$\sin\left(\frac{\pi}{3} + x\right) \times \sin\left(\frac{\pi}{3} - x\right) = \left(\sin\left(\frac{\pi}{3}\right)\cos x + \cos\left(\frac{\pi}{3}\right)\sin x\right) \left(\sin\left(\frac{\pi}{3}\right)\cos x - \cos\left(\frac{\pi}{3}\right)\sin x\right)$ $= \left(\frac{\sqrt{3}}{2}\cos x\right)^2 - \left(\frac{1}{2}\sin x\right)^2 = \frac{3}{4}\cos^2 x - \frac{1}{4}\sin^2 x = \frac{3}{4} - \sin^2 x$	11/2