The Islamic Institution for Education & Teaching Al-Mahdi Schools Class: Grade 11 (S)

Name:

Mathematics Department Scholastic Year: 2017-2018 Date: / 02 / 2018 Duration: 150 minutes Mark: 30 points

Answer Key

Question I (4 points)		
1)	$x^2 - 4x + 4 > 0$, then $(x - 2)^2 > 0$; this inequality is always true except for $x = 2$. The correct answer is (C).	0.75
2)	$\lim_{x \to -3} \frac{x^3 + 6x^2 + 9x}{(x+3)(x-2)} = 0; \text{ the correct answer is (B).}$	0.75
3)	$f'(x) = \frac{x^2 - 2x - 1}{(x - 1)^2}$; so $f'(3) = \frac{1}{2}$; the correct answer is (A).	0.75
4)	$\lim_{x \to 0} \frac{\sin 2x}{x} = \frac{2\sin 2x}{2x} = 2$; the correct answer is (B).	0.75

Question II (5 points)		Mark	
1)	x^{2} x^{2} $\mathbf{S} =$	$ + 4x + 3 > 0 \Rightarrow S_1 =] - ∞; -3[\cup] - 1; +∞[+ x - 2 < 0 \Rightarrow S_2 =] - 2; 1[= S_1 ∩ S_2 =] - 1; 1[. $	1.5
	a)	Let $t = x^2$; the equation becomes $8t^2 + 2t - 1 = 0$ so $t = -\frac{1}{2}$ or $t = \frac{1}{4}$. For $t = -\frac{1}{2}$; $x^2 = -\frac{1}{2}$ impossible & for $t = \frac{1}{4}$, $x = \pm \frac{1}{2}$.	1
2)	b)	Let $t = \frac{1}{1+y}$, the equation becomes $8t^2 + 2t^2 - 1 = 0$ so $t = -\frac{1}{2}$ or $t = \frac{1}{4}$. For $t = -\frac{1}{2}$, y=-3 & for $t = \frac{1}{4}$, y=3.	1
2	a)	$S = x_1 + x_2 = -\frac{b}{a}$ so $x_2 = -\frac{b}{a} - 2$.	0.75
3)	b)	$\frac{1}{x_1} + \frac{1}{x_2} = \frac{S}{P} = -\frac{b}{c} > 0.$	0.75

Question III (5 points)		
1)	$U_{1} = \frac{1}{3}U_{0} - 4, \text{ so } U_{1} = -3$ $U_{2} = \frac{1}{3}U_{1} - 4, \text{ so } U_{2} = -5$	0.5
2)	$U_{2} - U_{1} \neq U_{1} - U_{0} \text{ so, } (U_{n}) \text{ is not an arithmetic sequence}$ $\frac{U_{2}}{U_{1}} \neq \frac{U_{1}}{U_{0}} \text{ so, } (U_{n}) \text{ is not a geometic sequence}$	1
3)	a) $\frac{V_{n+1}}{V_n} = \frac{\frac{1}{3}U_n + 2}{U_n + 6} = \frac{1}{3} = r$, so (V_n) is a geometric sequence of first term $V_0 = 9$ and ratio $r = \frac{1}{3}$	1.5
	b) $V_n = V_0 \times r^n = 9 \times \left(\frac{1}{3}\right)^n$ and $U_n = V_n - 6 = 9 \times \left(\frac{1}{3}\right)^n - 6.$	1
4)	$S = V_0 \times \frac{1 - r^{n+1}}{1 - r} = \frac{27}{2} \left[1 - \left(\frac{1}{3}\right)^{n+1} \right]$	
5)	$U_{n+1} - U_n = -6 \times \left(\frac{1}{3}\right)^n < 0$, so (U_n) is decreasing.	0.5

Question IV (5 points)			Mark
1)	$\lim_{x\to 0}$	$\frac{f(x) - f(0)}{x} = \lim_{x \to 0^-} \frac{x(x-1)}{2x(x-1)} = \frac{1}{2} \text{ and } \lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x(-x-1)}{2x} = -\frac{1}{2} \text{ then}$	1.5
	f is	not differentiable at 0.	
2)	a)	$\tan(x+y) = \frac{30-5\sqrt{3}}{-5+10\sqrt{3}} = \sqrt{3}.$	0.75
	b)	$-\frac{\pi}{2} < x + y < \frac{\pi}{2}$ and $\tan(x + y) = \sqrt{3}$ then $x + y = \frac{\pi}{3}$.	0.5
3)	a)	$(\sin^2 a + 2\sin a \cos a + \cos^2 a) = \frac{49}{25}$, so $\sin a \cos a = \frac{12}{25}$.	1
	b)	sin a and cos a are roots of the equation $x^2 - \frac{7}{5}x + \frac{12}{25} = 0.$	1.25
		By calculator $\sin a = \frac{1}{5}$ and $\cos a = \frac{1}{5}$.	

	Question V (8 points)		
1)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-2x^3 - 3x^2 + 4 \right) = +\infty; \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-2x^3 - 3x^2 + 4 \right) = -\infty$	0.5	
2)	$f'(x) = -6x^{2} - 6x \qquad \frac{x -\infty -1 0 +\infty}{f'(x) - 0 + 0}$	0.25	
	f(x) $+\infty$ $_3$ $-\infty$	1	
3)	On $]-\infty$, 0[: the equation $f(x) = 0$ has no roots since the minimum of $f(x)$ is $3 > 0$. On $[0, +\infty[$: f is continuous, strictly decreasing, and $f(x)$ changes signs from +4 to $-\infty$, then the equation $f(x) = 0$ admits a root α . But $f(0.5) \cdot f(1) = -1(3) < 0$, then $\alpha \in]0.5$; 1[.		
4)	a) $f(x) + f(-1 - x) = 7 = 2(3.5), \text{ then } f(x) + f(2a - x) = 2b \text{ and } D_f =]-\infty; +\infty[\text{ is centered at } a = -0.5, \text{ then } I(-0.5; 3.5) \text{ is a center of symmetry of } (C)$	0.75	
	b) $(T): y - f(-0.5) = f'(-0.5)(x - 3.5)$. Thus, $(T): y - 3.5 = 1.5(x - 3.5)$	0.5	
5)	$\begin{array}{c} (C) \\ y \\ (T) \\ 5 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\$	1.5	
6)	$f(x) < 0 \text{ for } x > \alpha; \ f(x) > 0 \text{ for } x < \alpha; f(x) = 0 \text{ for } x = \alpha$	0.5	
7)	$-2x^3 - 3x^2 + 0.999 = 0$; f(x) - 3.001 = 0; f(x) = 3.001; (C) cuts the line of equation y = 3.001 in 3 points; the equation $-2x^3 - 3x^2 + 0.999 = 0$ has 3 roots.	0.75	
	a) $h(x) = (f(x))^2$. Thus, $\lim_{x \to -\infty} h(x) = \lim_{x \to +\infty} h(x) = +\infty$	0.5	
8)	b) $\frac{h(x) = (f(x))^2 \text{. Thus, } h'(x) = 2f(x) \cdot f'(x) = 2(-2x^3 - 3x^2 + 4)(-6x^2 - 6x)}{\frac{x}{h'(x)} - 0 + 0 - + \frac{1}{h(x)} + \infty}$	1	

Question VI (3 points)			Mark
1)	(A)	$B) \perp (AC); (AB) \perp (AS); (AB) \cap (AS) = \{A\}; thus, (AB) \perp (SAC)$	1.25
2)		$(AH) \perp (SC); (AB) \perp (SC); (AB) \cap (AH) = \{A\}; \text{ thus } (SC) \perp (ABH)$	1.05
	a)	but, H is midpt of [SC]. Thus, (ABH) is the mediator plane of [SC]	1.25
	b)	b) $(AHB) \perp (SC); (SC) \subset (SBC)$. Thus, $(SBC) \perp (AHB)$	0.5