The Islamic Institution for
Education \& Teaching Al-Mahdi Schools
Class: Grade 11 S
Name:

Mid-Year Exam

Mathematics Department
Scholastic Year: 2019-2020
Date: January 2020
Duration: 150 minutes
Mark: 30 points

Question		Answers	Note
$\underset{\text { Ipts }}{\text { I }}$	1	$\lim _{x \rightarrow+\infty} \frac{x^{2}}{4 x^{2}}<\lim _{x \rightarrow+\infty} f(x)<\lim _{x \rightarrow+\infty}-\left(-\frac{3 x^{2}}{12 x^{2}}\right), \text { then } \frac{1}{4}<\lim _{x \rightarrow+\infty} f(x)<\frac{1}{4}$ hence by Sandwitch theorem $\lim _{x \rightarrow+\infty} f(x)=\frac{1}{4}$, Thus, the answer is C	1
	2	$\mathrm{V}_{\mathrm{n}+1}-\mathrm{V}_{\mathrm{n}}=(\mathrm{n}+1) \mathrm{U}_{\mathrm{n}+1}-\mathrm{nU}_{\mathrm{n}}=\mathrm{nU}_{\mathrm{n}}+4-\mathrm{nU} \mathrm{U}_{\mathrm{n}}=4$. Thus,the answer is \mathbf{C}	1
	3	$\lim _{x \rightarrow 2} \frac{\left(\sqrt{2 x^{2}+1}-3\right)\left(\sqrt{2 x^{2}+1}+3\right)}{x(x-2)\left(\sqrt{2 x^{2}+1}+3\right)}=\lim _{x \rightarrow 2} \frac{2(x+2)}{x\left(\sqrt{2 x^{2}+1}+3\right)}=\frac{2}{3} . \quad$ Thus, the answer is B	1
	4	$x \in]-\infty, \frac{1}{2}[U] 1,3[$, Thus, the answer is B	1
$\begin{gathered} \text { II } \\ \text { 3pts } \end{gathered}$	1	$\left(x_{1}-3\right)\left(x_{2}-3\right)=P-3 S+9$ but $S=\frac{-b}{a}=9$ and $P=\frac{C}{a}=20$ Then $\frac{1}{x_{1}-3}+\frac{1}{x_{2}-3}=\frac{S-6}{P-3 S+9}=\frac{3}{2}$	1
	2	$\mathrm{S}^{\prime}=\mathrm{z}_{1}+\mathrm{z}_{2}=\frac{3}{2} \text { and } \mathrm{P}^{\prime}=\frac{1}{\mathrm{P}-3 \mathrm{~S}+9}=\frac{1}{2}$ Thus, the second degree equation is $z^{2}-S^{\prime} z+p^{\prime}=z^{2}-\frac{3}{2} \mathbf{z}+\frac{1}{2}=\mathbf{0}$	1
	3	Area of $\mathrm{ABC}=\frac{\mathrm{H} \times \mathrm{B}}{2}=\frac{\mathrm{AB} \times \mathrm{AC}}{2}=\frac{\mathrm{P}^{2}+\mathrm{s}^{2}-2 \mathrm{P}+1}{2(\mathrm{P}-3 \mathrm{~S}+9)}=\frac{221}{2} \mathrm{U}^{2}$	1
$\underset{4 \mathrm{pts}}{\text { III }}$	1	$\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=2\left(\frac{1}{9}\right)-1=\frac{-7}{9} ; \cos 2 \mathrm{y}=1-2 \sin ^{2} \mathrm{y}=1-2\left(\frac{5}{9}\right)=\frac{-1}{9}$	1
	2	$\tan (\mathrm{a}+\mathrm{b})=\frac{\tan \mathrm{a}+\operatorname{tanb}}{1-\operatorname{tanatan} \mathrm{b}}=\frac{-\frac{4}{3}+(-7)}{1-\left(-\frac{4}{3}\right)(-7)}=1$ then $\mathrm{a}+\mathrm{b}=\frac{\pi}{4} \quad$ with $\quad(0<\mathrm{a}+\mathrm{b}<\pi)$	1.5
	3	$\begin{aligned} & (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{BC}})=\pi+(\overrightarrow{\mathrm{BA}} ; \overrightarrow{\mathrm{BC}})=\pi-\frac{\pi}{6}(2 \pi)=\frac{5 \pi}{6} \quad(2 \pi) \\ & (\overrightarrow{\mathrm{BA}} ; \overrightarrow{\mathrm{CA}})=(\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{AC}})=\frac{\pi}{2} \quad(2 \pi) \\ & (\overrightarrow{\mathrm{AD}} ; \overrightarrow{\mathrm{BC}})=(\overrightarrow{\mathrm{AD}} ; \overrightarrow{\mathrm{DB}})+(\overrightarrow{\mathrm{DB}} ; \overrightarrow{\mathrm{BC}})=\frac{\pi}{2}+\pi-\frac{2 \pi}{9}-\frac{\pi}{6} \quad(2 \pi)=\frac{10 \pi}{9}(2 \pi) \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$
$\begin{gathered} \text { IV } \\ \text { 3pts } \end{gathered}$	1	$f(x)$ is continuous at $x=4$ then $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=f(4)$, then $4 a+b=6$ $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=4$ then $\mathbf{a}=\mathbf{4}$ and $\mathbf{b}=\mathbf{- 1 0}$	1.5
	2.a	$f^{\prime}(x)=4\left(\frac{5}{(3 x+2)^{2}}\right)\left(\frac{x-1}{3 x+2}\right)^{3}=20 \frac{(x-1)^{3}}{(3 x+2)^{5}}$	0.75
	2.b	$\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1+3 \cos 3 \mathrm{x}}{2 \sqrt{-x+\sin (3 x)}}$	0.75
$\underset{\text { 4pts }}{V}$	1	$\mathrm{U}_{1}=3, \mathrm{U}_{2}=-5,$ $\mathrm{U}_{1}-\mathrm{U}_{0}=4$ and $\mathrm{U}_{2}-\mathrm{U}_{1}=-8$ then $\mathrm{U}_{1}-\mathrm{U}_{0} \neq \mathrm{U}_{2}-\mathrm{U}_{1}$ then $\left(\mathrm{U}_{\mathrm{n}}\right)$ isn't arithmetic $\frac{\mathrm{U}_{1}}{\mathrm{U}_{0}}=-3$ and $\frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}=\frac{-5}{3}$ then $\frac{\mathrm{U}_{1}}{\mathrm{U}_{0}} \neq \frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}$ then $\left(\mathrm{U}_{\mathrm{n}}\right)$ isn't geometric	1
	2.a	$\frac{V_{n+1}}{V_{n}}=\frac{-3 U_{n+1}+1}{-3 U n+1}=\frac{6 U n-2}{-3 U n+1}=-2=$ constant then $\left(V_{n}\right)$ is a geometric sequence of common ratio $\mathrm{r}=-2$ and first term $\mathrm{V}_{0}=-3 \mathrm{U}_{0}+1=4$	0.75
	2.b	$\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{0} \mathrm{r}^{\mathrm{n}}=4(-2)^{\mathrm{n}}$	0.5
	$2 . \mathrm{c}$	$\mathrm{V}_{\mathrm{n}}=-3 \mathrm{U}_{\mathrm{n}}+1$ then $3 \mathrm{U}_{\mathrm{n}}=-\mathrm{V}_{\mathrm{n}}+1$ then $\mathrm{U}_{\mathrm{n}}=-\frac{1}{3} \mathrm{~V}_{\mathrm{n}}+\frac{1}{3}$	1

