E Class	ducat Al-N	nic Institution for ion & Teaching Iahdi Schools le 11 S	IN HIS NAME	Mathematics Department Scholastic Year: 2019-2020 Date: January 2020 Duration: 150 minutes Mark: 30 points	
Ques	stion		Answers		Note
I 4pts	1	$\lim_{x \to +\infty} \frac{x^2}{4x^2} < \lim_{x \to +\infty} f(x) < \lim_{x \to +\infty} -\left(-\frac{3x^2}{12x^2}\right), \text{ then } \frac{1}{4} < \lim_{x \to +\infty} f(x) < \frac{1}{4}$ hence by Sandwitch theorem $\lim_{x \to +\infty} f(x) = \frac{1}{4}, \text{ Thus, the answer is } C$			1
	2	$V_{n+1} - V_n = (n+1)U_{n+1} - nU_n = nU_n + 4 - nU_n = 4.$ Thus, the answer is C			
	3	$\lim_{x \to 2} \frac{(\sqrt{2x^2 + 1} - 3)(\sqrt{2x^2 + 1} + 3)}{x(x - 2)(\sqrt{2x^2 + 1} + 3)} = \lim_{x \to 2} \frac{1}{x(x - 2)(2x^2 $	$m_{2} \frac{2(x+2)}{x(\sqrt{2x^{2}+1}+3)} = \frac{2}{3}.$ Thus,	the answer is B	1
	4	$x \in]-\infty, \frac{1}{2}[\cup]1,3[$, Thus, the answer is B			
II 3pts	1	$(x_1 - 3)(x_2 - 3) = P - 3S + 9 \text{ but } S = \frac{-b}{a} = 9 \text{ and } P = \frac{C}{a} = 20$ Then $\frac{1}{x_1 - 3} + \frac{1}{x_2 - 3} = \frac{S - 6}{P - 3S + 9} = \frac{3}{2}$ S' = $z_1 + z_2 = \frac{3}{2}$ and P' = $\frac{1}{P - 3S + 9} = \frac{1}{2}$			1
	2	S' = $z_1 + z_2 = \frac{3}{2}$ and P' = $\frac{1}{P-3S+9} = \frac{1}{2}$ Thus , the second degree equation is $z^2 - S'z + p' = z^2 - \frac{3}{2}z + \frac{1}{2} = 0$			1
	3	Area of ABC = $\frac{H \times B}{2} = \frac{AB \times AC}{2} = \frac{P^2 + s^2 - 2P + 1}{2(P - 3S + 9)} = \frac{221}{2}U^2$			1
	1	$\cos 2x = 2\cos^2 x - 1 = 2\left(\frac{1}{9}\right) - 1 = \frac{-7}{9}; \cos 2y = 1 - 2\sin^2 y = 1 - 2\left(\frac{5}{9}\right) = \frac{-1}{9}$			1
III 4pts	2	$\tan (a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} = \frac{-\frac{4}{3}}{1 - (-\frac{4}{3})}$	$\frac{4}{4}(-7) = 1$ then $a + b = \frac{\pi}{4}$ with		1.5
	3	$(\overrightarrow{AB}; \overrightarrow{BC}) = \pi + (\overrightarrow{BA}; \overrightarrow{BC}) = (\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2}$ $(\overrightarrow{BA}; \overrightarrow{CA}) = (\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2}$	(2π)	$(2\pi) = \frac{10\pi}{2}$	0.5 0.5 0.5
	1	$(\overrightarrow{AD}; \overrightarrow{BC}) = (\overrightarrow{AD}; \overrightarrow{DB}) + (\overrightarrow{DB})$ f(x) is continuous at x = 4 the f(x) is differentiable at x = 4	en $\lim_{x \to 4^+} f(x) = \lim_{x \to 4^-} f(x) = f(x)$ then a = 4 and b = -10		1.5
IV 3pts	2.a	$f'(x) = 4\left(\frac{5}{(3x+2)^2}\right)\left(\frac{x-1}{3x+1}\right)$ $f'(x) = \frac{-1+3\cos 3x}{2\sqrt{-x+\sin(3x)}}$	$\left(\frac{1}{2}\right)^3 = 20 \frac{(x-1)^3}{(3x+2)^5}$		0.75
	2. b	$f'(x) = \frac{-1 + 3\cos 3x}{2\sqrt{-x + \sin(3x)}}$			0.75
V 4pts		$U_1 = 3, U_2 = -5,$ $U_1 - U_0 = 4 \text{ and } U_2 - U_1 = -8 \text{ f}$ $\frac{U_1}{U_0} = -3 \text{ and } \frac{U_2}{U_1} = \frac{-5}{3} \text{ then } \frac{U_1}{U_0} \neq -5 \text{ f}$	then $U_1 - U_0 \neq U_2 - U_1$ then $\neq \frac{U_2}{U_1}$ then (U_n) isn't geometri	c	1
	2.a	$\frac{V_{n+1}}{V_n} = \frac{-3U_{n+1}+1}{-3U_n+1} = \frac{6U_n-2}{-3U_n+1} = \frac{6U_n-2}{-3U_n+1} = \frac{6U_n-2}{-3U_n+1}$ common ratio r = -2 and first		a geometric sequence of	0.75
	2.b	$V_n = V_0 r^n = 4(-2)^n$			0.5
	2.c	$V_n = -3U_n + 1$ then $3U_n =$	$-V_n + 1$ then $U_n = -\frac{1}{3}\overline{V_n}$	$+\frac{1}{3}$	1

		$S = V_0 \left(\frac{1-r^{n+1}}{1-r}\right) = 4 \left(\frac{1-(-2)^{n+1}}{1+2}\right) = -\frac{4}{3}(1-(-2)^{n+1})$			
	2.d	$S' = -\frac{1}{3}S + \frac{1}{3}(n+1) = S' = -\frac{4}{9}(1 - (-2)^{n+1}) + \frac{1}{3}(n+1).$			
	1	f(0) = 3, f(-1) = 0, f'(-2) = 0	0.75		
VI 5pts	2	$\lim_{x \to -\infty} f(x) = -\infty ; \lim_{x \to +\infty} f(x) = +\infty$			
	3	f is not differentiable at $x = -1$ since the curve (C) admits two semi- tangents			
	4. a	$x \in]-\infty, -3[$			
	4. b	$x \in]-3, -2[\cup]0, +\infty[$			
		$x -\infty$ -2 -1 $+\infty$			
	5	5 $\frac{f'(x)}{x} + 0 - +$			
		$f(x) = 0 + \infty$			
	1	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^4 = +\infty \text{and} \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^4 = +\infty$	0.5		
	2	$g'(x) = 4x^{3} - 6x^{2} + 2$ But $(x - 1)^{2}(4x + 2) = (x^{2} - 2x + 1)(4x + 2) = 4x^{3} - 6x^{2} + 2.$			
		But $(x - 1)^{-}(4x + 2) = (x^{2} - 2x + 1)(4x + 2) = 4x^{2} - 6x^{2} + 2$. then $g'(x) = 4x^{3} - 6x^{2} + 2$			
		$(x - 1)^2 > 0$ and $(4x + 2) > 0$ if $x > -0.5$ then $g'(x) > 0$ over]-0.5; $+\infty$ [
		Thus, g is strictly increasing over]–0.5; $+\infty$ [.			
		$g'(x) = (x - 1)^2(4x + 2) = 0$ then $x_1 = -\frac{1}{2}$ and $x_2 = 1$.			
	3	$x -\infty -\frac{1}{2} +\infty$			
		$\frac{1}{g'(x)} - 0 + 0 + \frac{1}{2}$	1.5		
		g(x) 11 1			
		16			
		g is cont. str. increasing over] $-\frac{1}{2}$; $+\infty$ [from < 0 to > 0 then g(x) = 0 has one root in			
VII 7pts	4. a	this interval but $g(0) = 0$ then 0 is the root of $g(x) = 0$ in this interval.			
7 μις		g is cont. str. decreasing over $] - \infty$, $-\frac{1}{2} [$ from > 0 to < 0 then $g(x) = 0$ has one root α			
	in this interval				
	4.b	g(-0.84) = 0.0032 and $g(-0.83) = -0.041$			
		Then $g(-0.84) \times g(-0.83) < 0$			
		and $] - 0.84, -0.83[] - \infty, -\frac{1}{2}[$			
		Then $\alpha \in]-0.84$; -0.83[. $g''(x) = 12x^2 - 12x = 12x(x-1)$			
	5	g (x) = $12x^2 - 12x = 12x(x-1)$ then g "(x) vanishes at x = 0 and x = 1			
		by changing its signs, so g admits			
		two points of inflection (0,0) and (1,1)			
	6	(t): $y - g(1) = g'(1)(x - 1)$			
		but $g(1) = 1$ and $g'(1) = 0$.			
		Thus , (t): $y = 1$			
	7	Figure			