Q	Pa	irts	Elements of solution	
	A		$A_{1} = \frac{leg_{1} \times leg_{2}}{2} ABC \text{ is right at } A \text{ (given)}$ $= \frac{AB \times AC}{2}$ $= \frac{2(x+1) \times (x+1)}{2}$ $A_{1} = (x+1)^{2} cm^{2}$ $A_{2} = length \times width \ DEFG \text{ is a rectangle (given)}$ $A_{2} = 4(x-3)(x-3)$ $A_{2} = 4(x-3)^{2} cm^{2}$ But, $A_{1} = A_{2} \text{ (given)}$	So, $4(x-3)^2 = (x+1)^2$ Which is a 2 nd degree eqn in one unknown To solve it: we equate to zero then factorize $4(x-3)^2 - (x+1)^2 = 0$ [2(x-3)-(x+1)][2(x-3)+(x+1)]=0 (x-7)(3x-5)=0 If the product of two factors is zero then at least one of them is zero n) So, $(x-7)=0$ or $(3x-5)=0$ Hence, $x=7$ or $x=\frac{5}{3}$ But, $x > 3$ (given) Thus, $x = 7$ is accepted & $x = \frac{5}{3}$ is rej.
Ι		a 1 b	$x = 2\frac{1}{4} + \frac{3}{2}$ Thus, $x = \frac{15}{4}$ $= \frac{2}{1} + \frac{1}{4} + \frac{3}{2}$ $= \frac{8 + 1 + 6}{4}$ So, $\frac{x}{y} = \frac{15 \times 3}{4 \times 5}$ Thus, $\frac{x}{y} = \frac{9}{4}$	y = 1 + $\frac{1}{1 + \frac{1}{2}}$ = 1 + $\frac{1}{\frac{3}{2}}$ But, $AB = \frac{x}{y} \times 2^{2}$ So, $AB = \frac{9}{4} \times 4$ Thus, $y = \frac{5}{3}$ Thus, $AB = 9$
	В	2	$AI = \frac{16^{2} + 24^{3}}{128 \times 22} - \frac{1}{2}$ So, $AI = \frac{2^{8} + 2^{9} \times 3^{3}}{2^{7} \times 2 \times 11} - \frac{1}{2}$ $= \frac{2^{8}(1 + 2 \times 3^{3})}{2^{8} \times 11} - \frac{1}{2}$	$= \frac{(1+54)}{11} - \frac{1}{2}$ Hence, $AI = \frac{9}{2}$ But, $AB = 9$ Thus, $AI = \frac{AB}{2} = \frac{9}{2}$
		3	In $\triangle ABC$ we have: $AI = \frac{AB}{2}$ (proved) So, <i>I</i> is the midpoint of [<i>AB</i>] (<i>IJ</i>) is parallel to (<i>BC</i>) (given) (<i>IJ</i>) cuts [<i>AC</i>] at <i>J</i> (given)	Thus, <i>J</i> is the midpoint of $[AC]$ (By converse of midpoint theorem in $a\Delta$: St. line issued from midpoint of a side and parallel to the 2 nd passes through the midpoint of the 3 rd)

	С		To prove BC is double AM we expand both	AM = x(-9x+3) + (3x-1)(3x+1) + 3
		1	$BC = (2x+1)^2 - \frac{1}{2}x(8x-1) + \frac{3}{2}x + 3$ $= 4x^2 + 4x + 1 - 4x^2 + \frac{x}{2} + \frac{3x}{2} + 3$ $BC = 6x + 4$	$= -9x^{2} + 3x + (3x)^{2} - (1)^{2} + 3$ AM = 3x + 2 Thus, BC = 2AM
		2	In $\triangle ABC$ we have: BC = 2AM (proved) So, <i>M</i> is the midpoint of [<i>BC</i>]	Then, AM is a median of $[BC]$ Thus, $\triangle ABC$ is right at A (by converse of median relative the hypotenuse)
	1	a	$Q(x) = (3x-6)(x+1) - x^{2} + 4x - 4$ = 3x ² + 3x - 6x - 6 - x ² + 4x - 4 $Q(x) = 2x^{2} + x - 10$	The degree of $Q(x)$ is 2^{nd} since the highest power of the variable is 2
		b	Q(x) is a 2 nd degree polynomial in x, and it is a polynomial (no variables in the lowe	it is defined for all real values of x since r part and no variable under the radical)
		c	x = -1 is a root of Q(x) if Q(-1) = 0 $Q(-1) = 2(-1)^2 + (-1) - 10$	Hence, $Q(x) = -11 \neq 0$ Thus, $x = -1$ is not a root of $Q(x)$
		d	$Q(x) = (3x-6)(x+1) - x^{2} + 4x - 4$ = 3(x-2)(x+1) - (x ² - 2(x)(2) + (2) ²) = 3(x-2)(x+1) - (x-2) ²	So, $Q(x) = (x-2)[2(x+1)-(x-2)]$ Thus, $Q(x) = (x-2)(x+4)$
		e	A root is a value of the variable that vanishes the expr To find the roots of $Q(x)$ we solve $Q(x) = 0$ So, $(x-2)(x+4) = 0$	ression. So, $(x-2)=0$ or $(x+4)=0$ Thus, $Q(x)$ admits the two distinct roots $x = 2 \& x = -4$
Π			If $x = 2$ is a root of $P(x)$	0 = 4m - 8 - 8
	2		Then, $P(2) = 0$	Thus, $m = 4$
	-	-	$P(2) = (m-2)(2)^{2} - 8 + 3(2-2)(2-1)$	
	3	a	$P(x) = 2x^{2} - 8 + 3(2 - x)(x - 1)$ = 2x ² - 8 + 3(2x - 2 - x ² + x) = 2x ² - 8 + 9x - 3x ² - 6	Hence, $P(x) = -x^2 + 9x - 14$ Where, $a = -1, b = 9 \& c = -14$
		b	$P(x) = -x^{2} + 9x - 14 \text{ (proved)}$ - $x^{2} + 9x - 14 = -14$ Which is a 2 nd degree eqn in one unknown To solve it: we equate to zero then factorize	$-x^{2}+9x=0$ x(-x+9)=0 Thus the roots of the given equation are x=0 or x=9
		c	$P(x) = -x^{2} + 9x - 14$ $P\left(-\frac{1}{2}\right) = -\left(-\frac{1}{2}\right)^{2} + 9\left(\frac{-1}{2}\right) - 14$	$P\left(-\frac{1}{2}\right) = -\frac{1}{4} - \frac{9}{2} - 14$ Thus, $P\left(-\frac{1}{2}\right) = -\frac{75}{4}$

Mathematics.

Midterm exam

			$P(x) = 2x^2 - 8 + 3(2 - x)(x - 1)$	So, $P(x) = (x-2)[2(x+2)-3(x-1)]$
		d	$=2(x^{2}-2^{2})-3(x-2)(x-1)$	Thus, $P(x) = (x-2)(-x+7)$
			= 2(x-2)(x+2) - 3(x-2)(x-1)	
		a	F(x) represents a literal fraction, since there is a variable in its denominator.	
		b	x (2 2)(2	$\frac{F(x)}{2}$
	4		$F(2) = \frac{(2-2)(-2)}{(2-2)(2(2))}$	$\left(\frac{2+7}{2}\right) = \frac{0}{0}$, which admits
			infinite number of solutions	
			$F(3) = \frac{(3-2)(-3)}{(3-2)(2(3))}$	$\frac{(+7)}{(+5)} = \frac{4}{11}$, which admits
			a unique solution	
			5 $F(2) = \frac{\left(\left(\frac{-5}{2}\right) - \frac{1}{2}\right)}{\left(\left(\frac{-5}{2}\right) - \frac{1}{2}\right)}$	$\frac{-2\left(\frac{-5}{2}+7\right)}{2} = \frac{nonzero}{2}$
			$\left \frac{-2}{2} \right = \left(\left(\frac{-5}{2} \right) - 2 \right)$	$\left(2\left(\frac{-5}{2}\right)+5\right) = 0$
			which admits no s	solution
			$C_{\rm enclusion} = E(x) = defined for all contains$	5
			Conclusion: $F(x)$ is defined for all real values of x except $x = 2 \ll x = -\frac{1}{2}$	
		с	$F(x) = \frac{(x-2)(-x+7)}{(x-2)(-x+7)}$	$\frac{(-x+7)}{(x-7)} = \frac{1}{1}$
			(x-2)(2x+5)	(2x+5) 2
			$=\frac{(-x+7)}{(2-x)}$	50, -2x+14 = 2x+5
			(2x+5)	Hence, $x = \frac{7}{4}$ which is accepted, since it
				is in domain of $F(x)$
		-	$AB - \frac{1.05 \times 10^2 \times 20}{10^2 \times 20}$	So $AB = \frac{5 \times 21}{5}$
	1		420	
			$=\frac{105\times10^{-2}\times10^{2}}{}$	Thus, $AB = 5cm$
			21	
	2	а	$BC = \frac{28}{75} \times \frac{45}{21} - 5^{-1} + 3\frac{2}{5}$	$BC = \frac{4}{5} - \frac{1}{5} + \frac{2}{5} + 3$
III			75 21 5 $7 \times 4 0 \times 5 1 2$	5 5 5
			$ = \frac{7 \times 4}{3 \times 25} \times \frac{9 \times 5}{7 \times 3} - \frac{1}{5} + 3 + \frac{2}{5} $	$= 1 + 5$ Thus $BC = 2^2 cm$
			$P_{ABC} = sum of sides$	Hence, $P_{ABC} = BC + AB$
		b	= AB + BC + AC	=10+4
			But. ABC is isosceles A (given)	=14
			So, $AB = AC$ (legs of an iso. triangle)	Thus, $P_{ABC} = 1.4 \times 10^{1} cm$ (scientific notation)

Mathematics.

Midterm exam

