Lycée Des Arts

Mathematics Correction Standards

Parts	<i>Elements of answer N</i>		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 st - Exercise		0.000
1)	Given table is a table of proportionality (given) So, $\frac{2^n}{2^n - 2^{n+1}} = \frac{1}{a}$ then, $a = \frac{2^n - 2^{n+1}}{2^n}$ (reciprocal of equals are equal)	$a = \frac{2^{n}(1-2)}{2^{n}}$ Thus, $a = -1$ Choice, C	1-
2)	$\frac{a^{3}b-ab^{3}}{a-b} = \frac{ab(a^{2}-b^{2})}{a-b}$ $= \frac{ab(a-b)(a+b)}{a-b} \qquad (a \neq b)$ $= ab(a+b)$	$=\frac{-8}{5}\left(\frac{-6}{5}\right)$ $\frac{a^{3}b-ab^{3}}{a-b}=\frac{48}{25}$ Choice, A	1-
3)	The straight line $(d) \& (d')$ are parallel (given) So, slope of (d) = slope of (d') But, $(d): 4y + 2mx = 1$ So, $(d): 4y = -2mx + 1$ then, $y = \frac{-2m}{4}x + 1$ hence, slope of $(d) = -\frac{m}{2}$	but, (d'): $y = \frac{(n-1)}{2}x + 3$ so, slope of (d') = $\frac{n-1}{2}$ then, $-\frac{m}{2} = \frac{n-1}{2}$ (× 2) thus, $m + n = 1$ Choice, B	1-
4)	Points A & B are symmetric w. r.t I (given) So, I is the midpoint of [AB] Then, $x_I = \frac{x_A + x_B}{2}$ and $y_I = \frac{y_A + y_B}{2}$ So, $-1 = \frac{r - 2 + 2p + 3}{2}$ and $2 = \frac{p + 1 + r - 3}{2}$ then, $r + 2p = -3$ and $p + r = 6$ To find r & p we solve, $\{r + 2p = -3(1) \ (r + p = 6) \times (-1)(2)$	$\begin{cases} r+2p = -3\\ -r-p = -6\\ \text{then, } p = -9\\ \text{replace to get: } r = 15\\ \text{Choice, B} \end{cases}$	1-
5)	$y = 2x + 4s^2 - 49$ is a linear function (given) so, it is of the from $y = ax$ where, $b = 0$ so, $4s^2 - 49 = 0$ (2s - 3)(2s + 3) = 0 If product of two or more factors is null, then at least one of them is zero. Thus, $s = \frac{3}{2}$ or $s = -\frac{3}{2}$	Choice, <mark>C</mark>	1-

	2 nd - Exercise				
	l	$EF = \frac{\frac{2}{1} - \frac{2}{7}}{\frac{2}{7} - \frac{1}{\frac{2}{1} - \frac{3}{5}}} \times \left(-\frac{12}{9}\right)^{-1}$ $= \frac{\frac{14 - 2}{7}}{\frac{2}{7} - \frac{1}{\frac{10 - 3}{5}}} \times \left(-\frac{4}{3}\right)^{-1}$ $= \frac{\frac{12}{7}}{\frac{2}{7} - \frac{5}{7}} \times \left(-\frac{3}{4}\right)$	$= \frac{12}{-3} \times \left(-\frac{3}{4}\right)$ hence, $EF = 3cm$ $EK = \frac{3\sqrt{2} \times (\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} - (2 - \sqrt{2})$ $= \frac{3 \times 2 - 3\sqrt{2}}{\sqrt{2}^2 - 1^2} - (4 - 4\sqrt{2} + 2)$ $= 6 - 3\sqrt{2} - 6 + 4\sqrt{2}$ hence, $EK = \sqrt{2}cm$	1.5	
2	2	In $\Delta s EKP \& EFG$ sharing same vertex E we have: E, K & F E, P & G are collinear in this order. $\frac{EP}{EG} = \frac{\sqrt{2}}{3}$ (given) and, $\frac{EK}{EF} = \frac{\sqrt{2}}{3}$	hence, by converse of Thales' property: If a line cuts the sides of a triangle proportionally, then it is parallel to the third side. Thus, (<i>KP</i>)parallel to (<i>FG</i>)	1-	
		3 rd - Exercise			
1	[(r): my - 2mx = x + m (given) then, $my = 2mx + x + m$ my = (2m+1)x + m so, $y = \frac{(2m+1)}{m}x + \frac{m}{m}$ $m \neq 0$ thus, slope of $(r) = \frac{2m+1}{m}$		1	
2	a	Let $M(x; y)$ be a point on (CH) so, $a_{(CM)} = a_{(CH)}$ then, $(CH): \frac{y - y_C}{x - x_C} = \frac{y_H - y_C}{x_H - x_C}$ $\frac{y + 4}{x + 3} = \frac{-2 + 4}{1 + 3}$	Then, $\frac{y+4}{x+3} = \frac{1}{2}$ $y+4 = \frac{1}{2}(x+3)$ Thus, $(CH): y = \frac{1}{2}x - \frac{5}{2}$	1-	
	b	<i>Q</i> belongs to (<i>CH</i>)(given) so, coordinates of <i>Q</i> satisfies equation of (<i>CH</i>). so, $4a^2 - 12 = \frac{1}{2}(-1) - \frac{5}{2}$ $4a^2 - 12 = -3$	$4a^{2}-9=0$ (2a-3)(2a+3)=0 Thus, $a = \frac{3}{2}$ or $a = -\frac{3}{2}$ <i>Q</i> is quadrant III.	1	

	c	(r) & (CH) are parallel (given) so, slope of (r) = slope of (CH)		so, $\frac{2m+1}{m} = \frac{1}{2}$ $4m+2 = m$ Thus, $m = -\frac{3}{2}$	0.5
3	a.	<i>E</i> is on $x - axis$ so, $y_E = 0$ and <i>E</i> is on (<i>CH</i>) so, its coordinates satisfy equation of (<i>CH</i>)		so, $0 = \frac{x}{2} - \frac{5}{2}$ hence, $x = 5$ thus, $E(5;0)$	0.5
	b.	For <i>H</i> to be the midpoint of [<i>AB</i>] then, $x_H \stackrel{?}{=} \frac{x_C + x_E}{2}$ and $y_H \stackrel{?}{=} \frac{y_C + y_E}{2}$ $1 \stackrel{?}{=} \frac{-3+5}{2}$ and $-2 \stackrel{?}{=} \frac{-4+0}{2}$		1=1 and $-2=-2Thus, H is the midpoint of [CE]$	0.5
	c	Points C & B have same abscissas So, (CB) is parallel to $y - axis$		Of form, $(CB): x = cst$ Thus, $(CB): x = -3$	1-
	d	In $\triangle CBE$ we have: (<i>CB</i>) is parallel to $y - axis$ $y_B = y_E = 0$ so, (<i>BE</i>) is on $x - axis$ But, system is orthonormal.		so, $(CB) \perp (BE)$ (2 lines parallel to 2 perp. lines are perp) then, $\triangle CBE$ is right at <i>B</i> Thus, the center of (<i>S</i>) is, <i>H</i> is the midpoint of [<i>CE</i>] and its diameter is [<i>CE</i>].	0.5
4	a	(given) So, $(d) \perp (CE)$ $a_{(d)} \times a_{(CE)} = -1$	and , H $(d): \frac{y-x}{x-1}$ $\frac{y+2}{x-1} = \frac{y+2}{y+2} = \frac{y+2}{y+2}$	$\begin{array}{l} , \ a_{(d)} = -2 \\ H \text{ is on } (d) \\ \frac{-y_H}{-x_H} = a_{(d)} \\ \frac{-2}{-2(x-1)} \\ (d): \ y = -2x \end{array}$	1-
	b	<i>F</i> is intersection point of $(d) \& (BC)$ so, to find its coordinates we solve: $\int (d): y = -2x$ $\int (BC): x = -3$		F(-3;6)	1-

	а	In $\triangle CPE$ we have: <i>P</i> is the symmetric of <i>C</i> w.r.t <i>O</i> (given) then, <i>O</i> is the midpoint of [<i>CP</i>] and, <i>H</i> is the midpoint of [<i>CE</i>] (Proved)	then, (OH) is parallel to (EP) (midpoint theorem in a triangle) but, (d) is (OH) Thus, (d) is parallel to (EP)	0.5
5	b	(EP) is parallel to(d) (proved) So, $a_{(PE)} = a_{(d)} = -2$ And E is on (EP) So, $(EP): \frac{y - y_E}{x - x_E} = a_{(PE)}$ $\frac{y - 0}{x - 5} = -2$ Thus, (EP): $y = -2x + 10$	$(d) \perp (CE)$ (given) [CE] is a diameter of (S) (proved) (EP) is parallel to (d) (proved) so, $(EP) \perp (CE)$ at E thus, (EP) is tangent to (S) at E (Tangent theorem: tangent & radius are perp.)	1
		4 th - Exerci	se	
1	l			0.25
	a	Drawn.		0.25
2	b	In quadrilateral <i>ABCD</i> we have: <i>B</i> is the symmetric of <i>D</i> w.r.t. <i>S</i> (given) so, <i>S</i> is the midpoint of [<i>BD</i>] and, <i>S</i> is the midpoint of [<i>AC</i>] (given)	thus, <i>ABCD</i> is a parallelogram (having its diagonals bisect each other at same midpoint)	0.5
3	a	In $\Delta s IBN \& IDA$ we have: <i>ABCD</i> is a parallelogram (proved) (<i>AD</i>) (<i>NB</i>)(Opp. sides of a parallelogram) <i>A</i> , <i>I</i> & <i>N</i> <i>D</i> , <i>I</i> & <i>B</i> Then, by Thales' Property:	If a st. line is parallel to a side of a triangle then, it cuts other sides proportionally. Ratios: $\frac{IB}{ID} = \frac{IN}{IA} = \frac{BN}{DA}$ Thus, $\frac{IN}{IA} = \frac{x+1}{x+3}$	1-
	b	From above ratios: $\frac{IB}{ID} = \frac{IN}{IA} = \frac{BN}{DA}$ and, $\frac{IB}{ID} = \frac{2}{3}$ (given)	so, $\frac{x+1}{x+3} = \frac{2}{3}$ 3x+3 = 2x+6 thus, $x = 3$	0.5
	с	For, $x = 3$ (proved) and, $AD = x + 3 \& CD = 5x - 3$ (given)	AD = 3 + 3 & $CD = 5(3) - 2Thus, AD = 6cm & CD = 12cm$	0.5

		In \triangle <i>CDA</i> we have:	thus, $\triangle CDA$ is semi-equilateral at	
		A is a point on (C) of diameter $[DC]$	A (having $90^{\circ} \& hyp = 2$ smallest side)	
4		so, $D\hat{A}C = 90^{\circ}$ (inscribed angle facing diameter)	$AC = \frac{hyp\sqrt{3}}{2}$	1
		and, $AD = \frac{1}{2}DC$	$AC = 6\sqrt{3}cm$	
		2	Thus, $AC \approx 10.4 cm$	
	a	Drawn		0.25
5	b	 [FA)& [FC) are tangents to (C) of center O, at A & C respectively. (given) Then, (FO) is the perpendicular bisector of [AC] (Tangent theorem: line joining center and exterior point from which tangents 	are drawn is perp. bisector to chord formed by points of tangencies) But, <i>S</i> is the midpoint of $[AC]$ Thus, the points <i>F</i> , <i>S</i> & <i>O</i> are collinear.	1-
	С	In quadrilateral <i>OAFC</i> we have: [<i>FA</i>) is tangent to (<i>C</i>) of center <i>O</i> , at <i>A</i> . (given) Then, $O\hat{A}F = 90^{\circ}$ (Tangent theorem: tangent and radius are perp. at point of tangency) Then, $\triangle OAF$ is right of hyp. [<i>OF</i>] [<i>FC</i>) is tangent to (<i>C</i>) of center <i>O</i> , at <i>C</i> . (given)	Then, $O\hat{C}F = 90^{\circ}$ (Tangent theorem: tangent and radius are perp. at point of tangency) Then, $\triangle OCF$ is right of hyp. $[OF]$ Thus, $OAFC$ is inscribed in a circle whose center is L, the midpoint of $[OF]$ and diameter [OF] (quadrilateral formed of 2 right triangles sharing same hypotenuse)	1-