Parts	Elements of answer $\quad \mathcal{N o t e s}$		
$1{ }^{\text {st }}$ - Exercise			
1)	Given table is a table of proportionality (given) So, $\frac{2^{n}}{2^{n}-2^{n+1}}=\frac{1}{a}$ then, $a=\frac{2^{n}-2^{n+1}}{2^{n}}$ (reciprocal of equals are equal)	$a=\frac{2^{n}(1-2)}{2^{n}}$ Thus, $a=-1$ Choice, C	1^{-}
2)	$\begin{aligned} \frac{a^{3} b-a b^{3}}{a-b} & =\frac{a b\left(a^{2}-b^{2}\right)}{a-b} \\ & =\frac{a b(a-b)(a+b)}{a-b} \quad(a \neq b) \\ & =a b(a+b) \end{aligned}$	$\begin{aligned} & =\frac{-8}{5}\left(\frac{-6}{5}\right) \\ & \frac{a^{3} b-a b^{3}}{a-b}=\frac{48}{25} \end{aligned}$ Choice, A	1^{-}
3)	The straight line $(d) \&\left(d^{\prime}\right)$ are parallel (given) So, slope of $(d)=$ slope of $\left(d^{\prime}\right)$ But, (d): $4 y+2 m x=1$ So, (d): $4 y=-2 m x+1$ then, $y=\frac{-2 m}{4} x+1$ hence, slope of $(d)=-\frac{m}{2}$	but, $\left(d^{\prime}\right): y=\frac{(n-1)}{2} x+3$ so, slope of $\left(d^{\prime}\right)=\frac{n-1}{2}$ then, $-\frac{m}{2}=\frac{n-1}{2}(\times 2)$ thus, $m+n=1$ Choice, B	1^{-}
4)	Points A \& B are symmetric w. r.t I (given) So, I is the midpoint of $[A B]$ Then, $x_{I}=\frac{x_{A}+x_{B}}{2}$ and $y_{I}=\frac{y_{A}+y_{B}}{2}$ $\text { So, }-1=\frac{r-2+2 p+3}{2} \text { and } 2=\frac{p+1+r-3}{2}$ then, $r+2 p=-3 \quad$ and $\quad p+r=6$ To find $r \& p$ we solve, $r r+2 p=-3$.......(1) $(r+p=6) \times(-1) \ldots \ldots \ldots \ldots . . .(2)$	$\left\{\begin{array}{l} r+2 p=-3 \\ -r-p=-6 \end{array}\right.$ then, $p=-9$ replace to get: $r=15$ Choice, B	1^{-}
5)	$y=2 x+4 s^{2}-49$ is a linear function (given) so, it is of the from $y=a x$ where, $b=0$ so, $4 s^{2}-49=0$ $(2 s-3)(2 s+3)=0$ If product of two or more factors is null, then at least one of them is zero. Thus, $s=\frac{3}{2}$ or $s=-\frac{3}{2}$	Choice, C	1^{-}

$2^{\text {nd }}$ - Exercise				
		$\begin{aligned} E F & =\frac{\frac{2}{1}-\frac{2}{7}}{\frac{2}{7}-\frac{1}{\frac{2}{1}-\frac{3}{5}}} \times\left(-\frac{12}{9}\right)^{-1} \\ & =\frac{\frac{14-2}{7}}{\frac{2}{7}-\frac{1}{\frac{10-3}{5}}} \times\left(-\frac{4}{3}\right)^{-1} \\ & =\frac{\frac{12}{7}}{\frac{2}{7}-\frac{5}{7}} \times\left(-\frac{3}{4}\right) \end{aligned}$	$=\frac{12}{-3} \times\left(-\frac{3}{4}\right)$ hence, $E F=3 \mathrm{~cm}$ $\begin{aligned} & E K=\frac{3 \sqrt{2} \times(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}-(2-\sqrt{2}) \\ & =\frac{3 \times 2-3 \sqrt{2}}{\sqrt{2}^{2}-1^{2}}-(4-4 \sqrt{2}+2) \\ & =6-3 \sqrt{2}-6+4 \sqrt{2} \end{aligned}$ hence, $E K=\sqrt{2} \mathrm{~cm}$	1.5
		In $\triangle s E K P \& E F G$ sharing same vertex E we have: $\left.\begin{array}{l}E, K \& F \\ E, P \& G\end{array}\right\}$ are collinear in this order. $\frac{E P}{E G}=\frac{\sqrt{2}}{3}$ (given) and, $\frac{E K}{E F}=\frac{\sqrt{2}}{3}$	hence, by converse of Thales' property: If a line cuts the sides of a triangle proportionally, then it is parallel to the third side. Thus, $(K P)$ parallel to $(F G)$	1^{-}
$3^{\text {rd }}$ - Exercise				
		$(r): m y-2 m x=x+m$ (given) then, $m y=2 m x+x+m$ $m y=(2 m+1) x+m$ so, $y=\frac{(2 m+1)}{m} x+\frac{m}{m} \quad m \neq 0$ thus, slope of $(r)=\frac{2 m+1}{m}$		1
2	a	$\begin{aligned} & \text { Let } M(x ; y) \text { be a point on }(\mathrm{CH}) \\ & \text { so, } a_{(C M)}=a_{(C H)} \\ & \text { then, } \begin{aligned} &(C H): \frac{y-y_{C}}{x-x_{C}}=\frac{y_{H}-y_{C}}{x_{H}-x_{C}} \\ & \frac{y+4}{x+3}=\frac{-2+4}{1+3} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { Then, } \frac{y+4}{x+3}=\frac{1}{2} \\ & y+4=\frac{1}{2}(x+3) \\ & \text { Thus, }(C H): y=\frac{1}{2} x-\frac{5}{2} \end{aligned}$	1^{-}
	b	Q belongs to (CH)(given) so, coordinates of Q satisfies equation of (CH). so, $4 a^{2}-12=\frac{1}{2}(-1)-\frac{5}{2}$ $4 a^{2}-12=-3$	$\begin{aligned} & 4 a^{2}-9=0 \\ & (2 a-3)(2 a+3)=0 \\ & \text { Thus, } a=\frac{3}{2} \text { or } a=-\frac{3}{2} \end{aligned}$ Q is quadrant III.	1

	a	In $\triangle C P E$ we have: P is the symmetric of C w.r.t O (given) then, O is the midpoint of [CP] and, H is the midpoint of [CE] (Proved)	then, $(O H)$ is parallel to $(E P)$ (midpoint theorem in a triangle) but, (d) is (OH) Thus, (d) is parallel to $(E P)$	0.5	
5	b	$(E P)$ is parallel to (d) (proved) So, $a_{(P E)}=a_{(d)}=-2$ And E is on ($E P$) So, $(E P): \frac{y-y_{E}}{x-x_{E}}=a_{(P E)}$ $\frac{y-0}{x-5}=-2$ Thus, $(E P): y=-2 x+10$	(d) $\perp(C E)$ (given) [CE] is a diameter of (S) (proved) $(E P)$ is parallel to (d) (proved) so, $(E P) \perp(C E)$ at E thus, $(E P)$ is tangent to (S) at E (Tangent theorem: tangent \& radius are perp.)	1	
$4^{\text {th}}$ - Exercise					
				0.25	
	a	Drawn.		0.25	
2	b	In quadrilateral $A B C D$ we have: B is the symmetric of D w.r.t. S (given) so, S is the midpoint of [BD] and, S is the midpoint of $[A C]$ (given)	thus, $A B C D$ is a parallelogram (having its diagonals bisect each other at same midpoint)	0.5	
3	a	In $\triangle s I B N \& I D A$ we have: $A B C D$ is a parallelogram (proved) $(A D) \\|(N B)$ (Opp. sides of a parallelogram) $A, I \& N \not\}$ are collinear in this order $D, I \& B J$ Then, by Thales' Property:	If a st. line is parallel to a side of a triangle then, it cuts other sides proportionally. Ratios: $\frac{I B}{I D}=\frac{I N}{I A}=\frac{B N}{D A}$ Thus, $\frac{I N}{I A}=\frac{x+1}{x+3}$	1^{-}	
	b	From above ratios: $\frac{I B}{I D}=\frac{I N}{I A}=\frac{B N}{D A}$ and, $\frac{I B}{I D}=\frac{2}{3}$ (given)	$\begin{aligned} & \text { so, } \frac{x+1}{x+3}=\frac{2}{3} \\ & 3 x+3=2 x+6 \\ & \text { thus, } x=3 \end{aligned}$	0.5	
	C	For, $x=3$ (proved) and, $A D=x+3 \& C D=5 x-3$ (given)	$A D=3+3 \quad \& C D=5(3)-2$ Thus, $A D=6 \mathrm{~cm} \& C D=12 \mathrm{~cm}$	0.5	

4		In $\triangle C D A$ we have: A is a point on (C) of diameter $[D C]$ so, $D \hat{A} C=90^{\circ}$ (inscribed angle facing diameter) and, $A D=\frac{1}{2} D C$	thus, $\triangle C D A$ is semi-equilateral at A (having 90° \& hyp $=2$ smallest side) $\begin{aligned} & A C=\frac{h y p \sqrt{3}}{2} \\ & A C=6 \sqrt{3} \mathrm{~cm} \end{aligned}$ Thus, $A C \approx 10.4 \mathrm{~cm}$	1
5	a	Drawn		0.25
	b	$[F A) \&[F C)$ are tangents to (C) of center O, at $A \& C$ respectively. (given) Then, $(F O)$ is the perpendicular bisector of $[A C]$ (Tangent theorem: line joining center and exterior point from which tangents	are drawn is perp. bisector to chord formed by points of tangencies) But, S is the midpoint of [$A C$] Thus, the points $F, S \& O$ are collinear.	
	c	In quadrilateral $O A F C$ we have: [FA) is tangent to (C) of center O, at A. (given) Then, $O \hat{A} F=90^{\circ}$ (Tangent theorem: tangent and radius are perp. at point of tangency) Then, $\triangle O A F$ is right of hyp. [OF] $[F C)$ is tangent to (C) of center O, at C. (given)	Then, $O \hat{C} F=90^{\circ}$ (Tangent theorem: tangent and radius are perp. at point of tangency) Then, $\triangle O C F$ is right of hyp. [OF] Thus, $O A F C$ is inscribed in a circle whose center is L, the midpoint of $[O F]$ and diameter $[O F]$ (quadrilateral formed of 2 right triangles sharing same hypotenuse)	1^{-}

