

II.	1)		- Population is the set of 115000 voters in the parliament elections in Beirut. - Variable: Names of the lists competed in the 2018 parliament elections. - Nature: qualitative since the variable is not a numeral		
	2)	a.	The central angle corresponding to List-A is $\alpha_{A}=90^{\circ}$ (using the pie-chart) So, $\frac{\alpha_{\mathrm{A}}}{360^{\circ}}=\frac{\% f_{A}}{100}$ (central angles and percentage frequencies are proportional) Then, $\% f_{A}=25 \%$ But, any list that scored more than 20% wins (given) Thus, list-A wins. $\% f_{A}=\frac{f_{A}}{N} \times 100$ (rule or frequencies and their percentages are propotional) Thus, the number of voter for list-A is $f_{A}=\frac{115000 \times 25}{100}=28750$ voter.		
		b.	n is the central angle associated with the p then, $n=360-(90+60+70+80)$ thus, $n=58^{0}$	centage of list E sum of central angles)	
		3.	No, we can't calculate the average value of given data since character is qualitative.		
III.	1	a.			
		b.	$A \& B$ belong to (d) if their coordinates - $x_{A}-2 y_{A}-2=2-0-2=0$. - $x_{B}-2 y_{B}-2=6-4-2=0$.	tisfy the equation of $(d): x-2 y-2=0$ Verified Verified	
		c.	$\begin{aligned} A B & =\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}} \\ & =\sqrt{16+4} \\ A B & =2 \sqrt{5} \text { units. } \end{aligned}$	$\begin{aligned} A C & =\sqrt{\left(x_{A}-x_{C}\right)^{2}+\left(y_{A}-y_{C}\right)^{2}} \\ & =\sqrt{16+4} \\ A C & =2 \sqrt{5} \text { units. } \end{aligned}$ Hence, $A B=A C=2 \sqrt{5}$ Thus, triangle $A B C$ is isosceles at A.	
		2	$a_{(A C)}=\frac{y_{A}-y_{C}}{x_{A}-x_{C}}=-\frac{1}{2}$ $(\Delta) \perp(A C)$ (given) So, $a_{(\Delta)} \times a_{(B A)=}-1$	$a_{(\Delta)}=2 .$ But, (Δ) pass through A (given) Hence, $(\Delta): \frac{y-y_{A}}{x-x_{A}}=a_{(\Delta)}$ Thus, $(\Delta) y=2 x-4$	
	3		$\left(\Delta^{\prime}\right) \mid y-\operatorname{axis}$ (given) So, $\left(\Delta^{\prime}\right): x=c s t$ But, So, $B(6 ; 2)$ belongs to (Δ^{\prime}) (given) Hence, $\left(\Delta^{\prime}\right): x=2$	To get E the intersection point of $\left(\Delta^{\prime}\right) \&(\Delta)$ we solve the system: $\left\{\begin{array}{c} y=2 x-4 \\ x=6 \\ \text { Then, } y=8 . \end{array}\right.$ Thus, $E(6 ; 8)$	

		b	$(C A) \perp(A E)$ at A (proved) So, $\widehat{C A E}=90^{\circ}$ But, (C) is a circle of diameter $[C E]_{\text {(given) }}$ Thus, A is on (C) (inscribed angle facing diameter)	$B \& E$ have same abscissas $x_{E}=x_{B}=6$ So, $(B E) \mid y$-axis $B \& C$ have same ordinates $y_{E}=y_{B}=6$ So, $(B C) \\| x$ - axis But coordinate axes are perpendicular. Hence, $\widehat{C B E}=90^{\circ}$ Thus, B is on (C) (inscribed angle facing diameter)	
		a	F is the center of (C) with diameter $[C E]$ So, F is the midpoint of [CE]	$\begin{aligned} & x_{F}=\frac{x_{C}+x_{E}}{2}=2 \quad \text { and } y_{F}=\frac{y_{C}+y_{E}}{2}=5 \\ & \text { Thus, } \mathrm{F}(2 ; 5) \end{aligned}$	
	4	b	$L \& K$ on y-axis (given) So, $x_{L}=x_{K}=0$ $L \& K$ are on (C) (given) So, $F L=R$ Then, $F L^{2}=R^{2}$ But, $R=F A=\sqrt{\left(x_{A}-x_{F}\right)^{2}+\left(y_{A}-y_{F}\right)^{2}}$ $\begin{aligned} & R=5 c m \\ & F L^{2}=\left(x_{F}-x_{L}\right)^{2}+\left(y_{F}-y_{L}\right)^{2} \\ & 25=4+(y-5)^{2} \end{aligned}$ So, $(y-5)^{2}-21=0$ Hence, $(y-5-\sqrt{21})(y-5+\sqrt{21})=0$ Thus, $K(0 ; 5-\sqrt{21}) \& L(0 ; 5+\sqrt{21})$		
	5	a	$\overrightarrow{\boldsymbol{A C}}(-4 ; 2)$ (Graphically)		
		b	S is translate of B by $\overrightarrow{A C}$ (given) So, $\overrightarrow{B S}=\overrightarrow{\boldsymbol{A C}}$ So, $A B S C$ is a parallelogram But, $A B=A C=2 \sqrt{5} \mathrm{~cm}$ (proved) Thus, $A B S C$ is a rhombus	$\overrightarrow{B S}=\overrightarrow{A C}$ Equal vectors admit equal coordinates. So, $x_{\overrightarrow{A C}}=x_{\overrightarrow{B S}} \quad$ and $\quad y_{\overrightarrow{A C}}=y_{\overrightarrow{B S}}$ $x_{C}-x_{A}=x_{B}-x_{S} \& y_{C}-y_{A}=y_{B}-y_{S}$ Hence, $x_{S}=2$ and $y_{S}=4$ Thus, $S(2 ; 4)$	
		C	(k) is the image of $(A B)$ by $\overrightarrow{\boldsymbol{A C}}$ (given) So, $(k) \\|(A B)$ So, $a_{(A B)}=a_{(k)}=\frac{1}{2}$ But, A is on $(A B)$	So, its image C is on (k) Then, $(k): \frac{y-y_{c}}{x-x_{C}}=a_{(k)}$ Thus, $(k): y=\frac{1}{2} x+3$	
	6	a	Let α be acute angle between $(A B) \& x^{\prime} O x$ So, $a_{(A B)=} \boldsymbol{t a n} \alpha$	$\begin{array}{\|l} \hline \text { So, } \tan \alpha=0.5 \\ \alpha=\tan ^{-1}(0.5) \\ \text { Thus, } \alpha \cong 27^{\circ} \\ \hline \end{array}$	
		b	Let β be acute angle between $(A B) \& y$ 'Oy So, $\alpha+\beta=90^{\circ}$.	Hence, $\beta=90^{\circ}-27$ Thus, $\beta \cong 63^{0}$	

