	أسس التصحيح			
Q	Parts	Element	ts of answer	Notes
		<i>I</i> is the midpoint of $[BC]$ (given)	Â Â	
	1)	So, $AB + AC = 2AI$ (Median and vectors) But <i>G</i> is the centroid of triangle ABC (given)		
	1)	So, $\vec{AI} = 3\vec{GI}$		
		Thus, $\overrightarrow{AB} + \overrightarrow{AC} = 2(3\overrightarrow{GI}) = 6\overrightarrow{GI}$ (by subst	itution) B	
		In Δ 's ABE & EDC we have:		`
		(AB) (DC) (given)		P
		The points $\begin{array}{c} A, E \& D \\ B, E \& C \end{array}$ are collinear in	this order	
		By Thales' property: (Any line drawn parallel Ratios: $\frac{EC}{EB} = \frac{ED}{EA} = \frac{DC}{AB}$	to a side of a triangle cuts other sides proportionally)	
	2)	then $\frac{y+3}{y-3} = \frac{2y-2}{z-3} = \frac{3}{2y-3}$	B $3x-3$ D D	
		3x-3 - x + 3 - 6		
I.		Using ratios: $\frac{1}{3x-3} = \frac{1}{6}$ and $\frac{1}{x+3} = \frac{1}{6}$		
		We get: $\begin{cases} -3x + 2y = -9 \\ (-x + 4y - 7) \end{cases}$	$\begin{pmatrix} I \\ \end{pmatrix} \qquad \qquad$	
		$\left(\left(-x+4y=7\right)\right) \times (-3)$	(Π)	
		By emination we get: $y = 3$ Replace value of $y = 3$ in (I) to get $x = 5$ (accepted greater than 1)		
	3)	Replace value of $y = 5 \text{ m}(1)$ to get $x = 5$	So, $(-6x \le 19) \times (-1)$	
		$\left(\frac{3x+2}{5}-\frac{2x+1}{2}\leq\frac{x+4}{2}\right)\times 15$	Hence, $x \ge -\frac{19}{6}$.	
		Then, $3(3x+2) - 5(2x+1) \le 5(x+4)$	Thus, the negative integer solutions	
			are: $\{-3, -2, -1, 0\}$. - 1×6+3×5+5×2+7×4+8×3	
		$\sum_{n=1}^{5} x.n.$	$X = \frac{1 \times 0 + 5 \times 5 + 5 \times 2 + 7 \times 4 + 6 \times 5}{20}$	
	4)	$\overline{X} = \frac{\sum_{i=1}^{i} i \cdot i}{\sum_{i=1}^{i} i}$	$\overline{\mathbf{x}}$ 83	
		N	Thus, $X = \frac{1}{20}$	
	5)	$m \times n = \frac{2^{12} - 2^{10}}{2^8 - 2^6} = \frac{2^{10}(2^2 - 1)}{2^6(2^2 - 1)} = 2^4 = 16.$		
	6)	$7 + \sqrt{125} + \sqrt{20}$	$1 + \sqrt{5}$	
		$x = \frac{7 + \sqrt{123} + \sqrt{20}}{20}$	Hence, $x = \frac{1}{2}$	
		$\frac{20}{7 \pm \sqrt{5^2 \times 5} \pm \sqrt{2^2 \times 5}}$	$x = 1 + \sqrt{5}$ is a solution of $x^2 - ax + 1 = 0$	
		$=\frac{7+\sqrt{3}+\sqrt{2}+\sqrt{2}}{14}$	$\left(1+\sqrt{5}\right)^2$ $\left(1+\sqrt{5}\right)$	
		$7 + 7\sqrt{5}$	$\left(\begin{array}{c} 2 \end{array} \right) = \left(\begin{array}{c} 2 \end{array} \right) + 1$	
		$=\frac{7+7\sqrt{5}}{14}$	Hence, $10 + 2\sqrt{5} - 2a(1 + \sqrt{5}) = 0$	
		1 T	Thus, $a = \sqrt{5}$.	

Correction Standards

	1)		 Population is the set of 115 000 voters in the parliament elections in Beirut. Variable: Names of the lists competed in the 2018 parliament elections. 		
П.			- Nature: qualitative since the variable is not a numeral		
			The central angle corresponding to List-A is $\alpha_A = 90^\circ$ (using the pie-chart)		
	2)	a.	So, $\frac{\alpha_A}{360^\circ} = \frac{\% f_A}{100}$ (central angles and percentage frequencies are proportional)		
			Then, % $f_A = 25\%$		
			But, any list that scored more than 20% wins (given)		
			f		
			% $f_A = \frac{f_A}{N} \times 100$ (rule or frequencies and their percentages are proportional)		
			Thus, the number of voter for list-A i	s $f_A = \frac{115000 \times 25}{100} = 28750$ voter.	
			n is the central angle associated with the pe	rcentage of list E	
		b.	then, $n = 360 - (90 + 60 + 70 + 80)$. (thus, $n = 58^{\circ}$	(sum of central angles)	
	3	8.	No, we can't calculate the average value of given data since character is qualitative.		
			Ту Ту		
			C B B		
	1	a.		×,	
				2 A 3 4 5 6	
			(d)		
		b.	A & B belong to (d) if their coordinates satisfy the equation of (d): $x - 2y - 2 = 0$		
			• $x_A - 2y_A - 2 = 2 - 0 - 2 = 0.$	Verified	
			• $x_B - 2y_B - 2 = 6 - 4 - 2 = 0.$	Verified $\sqrt{(1-1)^2 + (1-1)^2}$	
			$AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} - \sqrt{16 + 4}$	$AC = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} - \sqrt{16 + 4}$	
		c.	$AB = 2\sqrt{5} units.$	$AC = 2\sqrt{5} \text{ units.}$	
ш				Hence, $AB = AC = 2\sqrt{5}$	
111.				Thus, triangle ABC is isosceles at A .	
				$a_{(\Delta)}=2.$	
	2		$a_{(AC)} = \frac{y_A - y_C}{y_C} = -\frac{1}{2}$	But, (Δ) pass through A (given)	
			$(A) \mid (AC)$ (given)	Hence, $(\Lambda): \frac{y - y_A}{z} = a_{(\Lambda)}$	
			So, $a_{(\Lambda)} \times a_{(RA)} = -1$	$x - x_A$	
				Thus, $(\Delta)y = 2x - 4$	
			$(\Delta') y - axis$ (given)	To get <i>E</i> the intersection point of (Δ') & (Δ)	
	3		So, (Δ') : $x = cst$	we solve the system:	
		a	But, So, $B(6;2)$ belongs to (Δ') (given)	$\begin{cases} y = 2x - 4 \\ x = 6 \end{cases}$	
			Hence, (Δ') : $x = 2$	Then, $y = 8$.	
				Thus, <i>E</i> (6; 8)	

3rd-Trial (17-18)

Correction Standards

			$(CA) \perp (AE)$ at A (proved)	<i>B</i> & <i>E</i> have same abscissas $x_E = x_B = 6$
			So, $\widehat{CAE} = 90^{\circ}$ But, (C) is a circle of diameter [CE](given)	So, $(BE) y - axis$
				$B \& C$ have same ordinates $v_{p} = v_{p} = 6$
		h	Thus, A is on (C) (inscribed angle facing	So $(BC) _{x-axis}$
		U	diameter)	But coordinate axes are perpendicular
				Hence, $\widehat{CBE} = 90^{\circ}$
				Thus, B is on (C) (inscribed angle facing
				diameter)
		я	F is the center of (C) with diameter $[CE]$	$x_F = \frac{x_C + x_E}{2} = 2$ and $y_F = \frac{y_C + y_E}{2} = 5$
		a	So, F is the midpoint of $[CE]$	Thus, F (2; 5)
			L & K on y - axis (given)	\mathbf{y} ($\mathbf{\Delta}$) ($\mathbf{\Delta}$)
			So, $x_L = x_K = 0$	c9
			L & K are on (C) (given)	e e
			So, $FL = R$	7
			Then, $FL^2 = R^2$	6
	4		But, $R = FA = \sqrt{(x_A - x_F)^2 + (y_A - y_F)^2}$	5 F
		b	R = 5cm	4
			$FL^{2} = (x_{F} - x_{L})^{2} + (y_{F} - y_{L})^{2}$	
			$25 = 4 + (y - 5)^2$	
			So $(y-5)^2 - 21 = 0$	
			(1, 5) $(1, 5)$ (21) $(1, 5)$ (21) (21)	4 -3 -2 -1 0 0 1 2 A 3 4 5 6 7
			Hence, $(y-5-\sqrt{21})(y-5+\sqrt{21})=0$	
			Thus, $K(0;5 - \sqrt{21}) \& L(0;5 + \sqrt{21})$	
		a	$\overline{AC}(-4;2)$ (Graphically)	
			S is translate of B by \overrightarrow{AC} (given)	$\overrightarrow{BS} = \overrightarrow{AC}$
			So, $\overline{BS} = \overline{AC}$	Equal vectors admit equal coordinates.
		b	So, <i>ABSC</i> is a parallelogram	So, $x_{\overrightarrow{AC}} = x_{\overrightarrow{BS}}$ and $y_{\overrightarrow{AC}} = y_{\overrightarrow{BS}}$ $x_{\overrightarrow{AC}} = x_{\overrightarrow{BS}} = x_{\overrightarrow{BS}} = x_{\overrightarrow{BS}}$
			But, $AB = AC = 2\sqrt{5}cm$ (proved)	Hence, $x_c = 2$ and $v_c = 4$
	5		Thus, <i>ABSC</i> is a rhombus	Thus, $S(2;4)$
			(k) is the image of (AB) by \overrightarrow{AC} (given)	So, its image C is on (k)
			So, $(k) (AB)$	$y - y_c$
		c		Then, $(k): \frac{1}{x-x_{c}} = a_{(k)}$
			So, $a_{(AB)} = a_{(k)} = \frac{1}{2}$	\sim 1
			But A is on $(AB)^2$	Thus, $(k): y = \frac{1}{2}x + 3$
	6	a	Let α be acute angle between (AB) & x'Ox	So, $\tan \alpha = 0.5$
			So, $a_{(AB)} = tan\alpha$	$\alpha = \tan^{-1}(0.5)$
				Thus, $\alpha \cong 27^{\circ}$
		1	Let β be acute angle between $(AB)\&v'Ov$	Hence, $\beta = 90^{\circ} - 27$
		b	So, $\alpha + \beta = 90^{\circ}$.	Thus, $\beta \cong 63^{\circ}$

	1		A	
			[MB)&[MC] are tangents to (C) , issued from M at points $B&C$ respectively (given)	
			O is center of (C) (given)	
			Thus, (OM) is the perpendicular bisector of $[BC]$ (Tangent theorem: line joining exterior	
			point from which two tangents are drawn and center is perpendicular bisector of segment	
			joining points of tangencies)	
			In triangles $AIO \otimes OMP$ we have: $(OM) + 1$: $(DC) = MPO = 90^{\circ}$	
			$(OM) \perp \text{bisector of } [BC](\text{proved})$ - $MOP = IOA$ « common	
		а	So, $AIO = 90^{\circ}$ Thus $AIO & OMP$ are similar by angle	
			P is the orthogonal projection of M on angle postulate	
			(OA)(given)	
			So, $\overline{MPO} = 90^{\circ}$	
			AIO & OMP are similar (proved) Using ratios: 2 & 3 we get:	
	2	h	$AIO \mid \stackrel{1}{AI} \stackrel{2}{IO} \stackrel{3}{AO} 1$ Thus, $MO \times IO = AO \times PO$	
		Ŭ	Ratio of similitude: $MPO\left[\frac{MP}{MP} = \frac{10}{PO} = \frac{10}{MO}\right]$	
			MPO MP PO MO	
IV.			In right triangle <i>OMP</i> : In right triangle <i>OMC</i> : Thus,	
			$\cos M\hat{O}P - \frac{adj}{O} - \frac{OP}{\sin OMC} - \frac{opp}{OC} - \frac{OP}{OC} - \frac{OC}{OC}$	
		c	$\cos MOI = \frac{1}{hvp} - \frac{1}{OM}$ $\sin OMC = \frac{1}{hvp} - \frac{1}{OM}$ $\cos MOP = \sin OMC$	
			OP OC (by comparison)	
			So, $OM = \frac{OV}{MOR}$ So, $OM = \frac{OV}{\sin OMC}$	
			COS MOP SINOMC	
			Live circle (S) of diameter [MC]. And (OC) \perp (MC) (because of the tangent (MC) to the	
		a	circle (S))	
			So (OC) is the tangent to (S) as being perpendicular to the diameter [MC].	
			In the triangles CIO and MCO we have:	
			(A) : $\widehat{OCM} = \widehat{CIO} = 90^{\circ}$ « perpendicular »	
	3		$\overline{(A)}$: $\widehat{COI} = \widehat{COM}$ « Common angle»	
		b	Hence, triangles CIO and MCO are similar by using AA property.	
			$CIO = CI = \frac{10}{10} - \frac{CO}{CO}$ so $\frac{10}{10} - \frac{CO}{CO}$ then $MO \times 10 - CO^2$	
			MCO = MC = CO = MO = MO = MO = CO	
			therefore $MO \times IO = R^2$	
		C	$AU \times PU = R^{2}; \ 2R \times UP = R^{2}$	
		C	$MO \times IO = R^2$; therefore $OP = \frac{1}{2}$ unit	
	4 In the triangle OAM we have: $(AI) \perp (MO)$ (where (And likewise (MP) \perp (AO) (because of the height) Hence (MP) is a height. The two heights intersect in K so K is the orthocente Thus, (ON) \perp (MA) because (ON) passes through vertice		In the triangle OAM we have: (AI) \perp (MO) (where (AI) is the height proved)	
			And likewise (MP) \perp (AO) (because of the height)	
			Hence (MP) is a height.	
			The two heights intersect in K so K is the orthocenter of the triangle OAM.	
			Thus, (ON) ⊥ (MA) because (ON) passes through vertex O and orthocenter K	