


	3> In D AOB we have:
	I is the mid pt of [AB] (given)
	Sa, (DI) is a median relative to EAB
CIUS	but, IO = IA = IB (given)
	then, ABB is right at a (by converse of median relative
	thyp)
	but, a belings to LACI (given).
	SO, AOB = BOC 90 (Supplementing angles)
11.1	
	then is 1804 is right at 0.
	but f is the midpl of [BC] (given)
	then [O]) is amedian relativet hyp [BC]
	hence, Jo = JC = JB.
	Thus, D Joc is isosceles at O (having two equal sides) (A)
	4) F-(32-5)(2) 16-92 For F t exist.
	5x-2(-0) 4-102 5x-2 ±0
	6x+10+10-9x -2(5x-2)
	F = 26 - 15x $-2(5x-2)$
	1(5)
	which is a literal traction defined for all values of a except for x = 2
	since it has a variable in its denominator D
	3×2+3+3+3+3+1 A-37
	2 2 - 1
	2×1 = 37×2+2
	3 3
	A = 37 - 6.1666
	$A = \begin{array}{c} 4 \times 4 \\ \hline 4 \times 5 \\ \hline \end{array} + \begin{array}{c} 3 \times 3 \\ \hline 7 \times 3 \\ \hline \end{array}$
	A = 6.17 approximated by excess to nome

20) G(N) = Y(X-1) = (3x+2)
= [2(n-1)] = (3n+e)2
-[2(n-1)-(3x+2)][2(n-1)+(3x+2)]
=(2x-2-3x-2)(2x-2+3x+2)
=(-n-4)(52)
Thus, $G(x) = -5x(x+4)$
$H(x) = (x+4)^4 - (x+3)(x+4)^4 + 2x^2 - 32$
$H(x) = (x+4)^2 - (x+3)(x+4) + 2x^2 - 32$ = $(x+4)^2 - (x+3)(x+4) + 2(x^2-4^2)$
$=(2+4)^2-(2+3)(2+4)+2(2-4)(2+4)$
$=(x+4)\int x+4-(x+3)+2(x-4)$
Thus, (40) - (n+4) (2n-7)
b) To find rooks of G(2)
we some bachined form of and 50
SO -5N(2+4)=0
by Q 50,
-57 D UT 71+4 D
The War of Hard
This, the roots of the can Ger) so are 0 4-4
3)a) SA = G(x) (given)
4 1= -4 13 a not of G(x) (proved)
So, 6(-4) =0
Thus, the side SA duesn't exist by 2 = 4 since it is
reduced to zero
So H(1) = (5) (2-7)
b) AL = H(a) (given) =-25 (0
H(2) = (x+4)(2x-7)

	we no fice that.
	M(1) = -25 <0
	which is rejected, stace a side exists it is spictly
	pusi pur.
	C) For SALI to be a shumbus
	Then SA = AL (conschitus sides in a shumbus are equal)
	So, Gar) = Man
	So (2+4)(2x-7) = -52 (x+4)
	(2+4)(2x-7) + 5x(x+4)=
	(2+4) [(2x-7) + 5x]-v
	(9+4) (72-7) =>
	by 0 50, ny 400 0172 -700
	Men 2=-4 or 2=1
	which are noth rejected
	Since m=-4 deminishs Glat t Zen
	d n=1 makes H(x) negative
	Thus, there is no value of a for which SALI is a thom:
6 n 2	B
UN-S.	1) Drawn. V
	2) In D's A'HC of AHC we have
	HIS the symm. of H w.r. + H (given)
	Su H is the midpl of IAA)
>	Then AH = AH.
	[AH) is a height relative to (BC) (given)
_8	SU, AHC = AHC = 90 C' 11 600
	15.1
->	CHCI is a common side.
ACT BAN	Thus, DS AHC + AHC
	are equal by S.A.S property.
	, o m
	DABC is right at A (given)

		,			,			4											
	So,	BE	A:	-6		15	um	of	rasc	any	rles	in	a	194	1	1			
	but	AH	Ca	- 1	HC	a	N	Con	an.	m L	(p	nu	d).						
	Thus	A	13	- ,	3/	9'-	60	6	1 64	2.	mul	1100	at t	0/	mo	nk	,		
		11							0	1,0	,,,,,	Ju	, , , , , , , , , , , , , , , , , , ,	Cie	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	3a> :	In	rrai	1/	- xia	. 1.	nn		1	6.0	18	1		1					
			N		Tiar	18	0	10	7	JP	1		we	- MA	ve				
		715 Cn	1h	c h	nid	P	7	150		911	en)			2-1					
		AM				a .		rela	Tiv	e Z	h	P.	11.	5					
	Th	en,		-	- 4	-	-												
		bu	1	B	C=	60	m	(9	wen)				7					
	7	hus	,	AI	4 =	30	m	,											
										-				-					
0	In	A	CM	we	he	w													
	MA						bs	m	die	n	no la	hu	+	hyp)				
	byt											,,,,		//					
	Thus								1	h		2	-	. /	~	1	/ 0	10	
	Thus	1) M	171	15	qu	Las	erat		(LAV)	no)	an	ega	al	510	159	* a	00	
	1 -		1	//	-	0.0		1	1		ĺ,	1	2	0	1	0.0			
	b) In	9110	B//	lake	aL	CA	MA	we	Na	ve;			-	-			+ ,-		-
		SHA						pn:	rd)						-		es (-	
	50, [MH)	15 0	a M	e dia	17					50	, 1	1c=	CI	9' 1	510	les in	lan	om
	my In	(H)	Ts a	he	ight	1					7,	hus,	D	5 0	re	eg	wal	-	
0	hence,	MH)13/	he ,	perp	. bi	ech	rof	A	1)	5	4	S.A	S	PI	UP	ert	4	
	[AH)	13	a he	ighi	15	sted	from	na	ver	ex	(7	(3/1)	-	6		
	A CA	uile	tera	10	5	PM	C .				0 -	A	7-131	nn	F	A'B	Car	re	
0	So T	a U) ic	PI	0	200	two	PT	MC)		qual		row.					
	hence	dia	112	Saul	21	Ton	1)	F 6		e	0	7ual	2	A	121	22	11.	1_	-/-
	ha d	0/49	WILLS	1190	14	UN	Jan	per	y .		20	1 4	DL.	- //	De	- 20 _	111	hum	ola
	Distih	r of	CA	ch	Oti	ner.		1					_	-		elen	ens	1	 7
	7 Aus,	C	HM.	H	5 6	1/1	hum	bus			T	hus,	B	C)	15	the	bi	SCC	W
		-							,			of	A	BA	+	1			
4>	In	05	A	BC	d	AL	36	we/	have	1		/,-	- , ;		, —	l	-	+	

	5) drawn d'	
	a) In quadrilateral CHE'H' we have:	
	C'+H' are the resp. Symmetries of Cott with A (given)	
	Then A is the mid pt of Ecci) + HH	
	Thus, CHCHI's a parallelogram (its diagonals brecken	1
	other at the same mid of	1
	5h). EAHT is a hight issued from verker of equilational	
	DAMC (given)	
	then, [AH] 13 a me dian re take to [MC]	-
	hence, His the midget of EMC)	
	but MA=MC=3cm (proved)	
	Then, HC = MC -1.5 cm	
	but MCHC is a parallelogram (proved)	-
	This HICH Sond and City	-
	Thus, HC=H'C'=15cm (opp. sides of a parallelogram	
	C) DAMO 18 equilaleral (proved)	
	So, AM = Ac (Sides of equilabrate)	
	byt C'AM are symmetries of CAM	
	wr. + A resp. (gwan)	
	Thus, CC - MM' (double of equals are equal)	
9	In quadrilahral CMCM we have	
	C & M' are resp. Symmetries of CAM	-
	wir.A. A resp (given)	-
	LCC=MM (Prased)	-
	Thus, CMCM is a rechange	#
	(having its dragonals bisecteach	+
	other at same midpt and extent)	+