

Consider the two distinct circles C(O;R) & C'(O;R'), where R & R' are **positive non-zero** numbers.

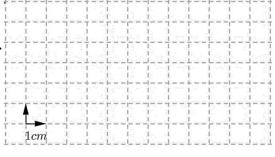
NO.	Relative Position of the two circles		Graphical representation	Mathematical relation	
1	Two Circles are Disjoint:	Internally If	(C) R (C') B A	OO' < R - R', where(R > R')	
1.		Externally If	(C) (C')	OO'>R+R'.	
0	Two Circles are Tangent :	Externally If	(C) (C') (C') A	OO'=R+R'.	
2.		Internally If	(C) (T)	OO' = R - R'.where(R > R')	
3.	Two Circles are Intersecting if		(C) R (C') A	R - R' < OO' < R + R'.(R > R')	

			Externally	Internally
Sı	Carraga arang	Tangent	00' = r + r'	00' = r - r'
	Summary:	Disjoint	00' > r + r	00' < r - r'

If none of the above applies, then circles are secant

Application

Whenever you want to work an exercise that askes you about relative position, try this way, it works all the time.

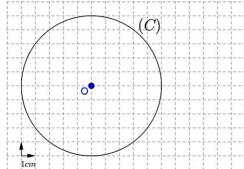

Determine relative positions of circles C(0, r = 3cm) & n(P, r' = 5cm), where OP = 7cm. To study relative positions of two circles:

Explanation	Calculation
1 st : calculate the sum and the difference	r + r' = 3 + 5 = 8cm
between the radii	r'-r=5-3=2cm
2 nd Find the distance between the centers	OP = 7cm
	1) Is $OP = r + r'$ (7 \neq 8 $false$), then circles are
	not tangent externally.
	2) Is $OP = r - r'$ (7 \neq 2 $false$), then circles are
3 rd Compare the distance between the	not tangent internally.
centers to the sum and difference	3) Is $OP > r + r'$ (false), then circles are not
between the radii.	disjoint externally.
	4) Is $OP < r - r'$ (false), then circles are not
	disjoint internally.
	5) Thus, circles are secant $(r - r' < 0P < r + r')$

Ex-1: Consider the circles $\lambda(O,5cm)$ & $\Delta(O',3cm)$ where $OO' = \frac{3^3 + 243}{135}cm$

- a) Prove that OO'is a natural number to be determined.
- b) Find the difference between the two radii.
- c) Draw on the adjacent grid (λ) & (Δ) .
- d) At how many points do $(\lambda) \& (\Delta)$ intersect?
- e) Deduce the relative positions of $(\lambda) \& (\Delta)$.

.....



Ex-2: In the adjacent figure (C) is a circle of center O and radius r = 5cm.

1) Trace a circle C'(O', r'=3cm), so that $OO'=5.6-2\times0.23\times10cm$

.....

- 3) Deduce the relative position of (C) & (C')?

