9 Lycée Des Arts \quad Mathematics $\quad 8^{\text {th_G_Grade. }}$

Consider the two distinct circles $C(O ; R) \& C^{\prime}\left(O ; R^{\prime}\right)$, where $R \& R^{\prime}$ are positive non-zero numbers.

\mathcal{N} O.	Relative the tw	osition of circles	Graphical representation	Mathematical relation
1.	Two Circles are Disjoint:	$\begin{array}{\|c} \text { Internally } \\ \text { If } \end{array}$		$O O^{\prime}<R-R^{\prime}, \text { where }\left(R>R^{\prime}\right)$
		Externally If		$O O^{\prime}>R+R^{\prime} .$
2.	Two Circles are Tangent:	$\begin{array}{\|c} \text { Externally } \\ \text { If } \end{array}$		$O O^{\prime}=R+R^{\prime}$.
		Internally If		$O O^{\prime}=R-R^{\prime}$.where $\left(R>R^{\prime}\right)$
3.	Two Ci Interse	cles are cting if		$R-R^{\prime}<O O^{\prime}<R+R^{\prime} .\left(R>R^{\prime}\right)$

Summalry:	Externally	Internally	
	Tangent	$O O^{\prime}=r+r^{\prime}$	$O O^{\prime}=r-r^{\prime}$
	Disjoint	$O O^{\prime}>r+r^{\prime}$	$O O^{\prime}<r-r^{\prime}$

If none of the above applies, then circles are secant

Application

Whenever you want to work an exercise that askes you about relative position, try this way, it works all the time.
Determine relative positions of circles $C(O, r=3 \mathrm{~cm}) \& n\left(P, r^{\prime}=5 \mathrm{~cm}\right)$, where $O P=7 \mathrm{~cm}$. To study relative positions of two circles:

Explanation	Calculation
$1^{\text {st }}$: calculate the sum and the difference between the radii	$\begin{aligned} & r+r^{\prime}=3+5=8 \mathrm{~cm} \\ & r^{\prime}-r=5-3=2 \mathrm{~cm} \end{aligned}$
$2^{\text {nd }}$ Find the distance between the centers	$O P=7 \mathrm{~cm}$
$3{ }^{\text {rd }}$ Compare the distance between the centers to the sum and difference between the radii.	1) Is $O P=r+r^{\prime}(7 \neq 8$ false $)$, then circles are not tangent externally. 2) Is $O P=r-r^{\prime}(7 \neq 2$ false $)$, then circles are not tangent internally. 3) Is $O P>r+r^{\prime}$ (false), then circles are not disjoint externally. 4) Is $O P<r-r^{\prime}$ (false), then circles are not disjoint internally. 5) Thus, circles are secant $\left(r-r^{\prime}<O P<r+r^{\prime}\right)$

$\boldsymbol{E x}$-1: Consider the circles $\lambda(O, 5 \mathrm{~cm}) \& \Delta\left(O^{\prime}, 3 \mathrm{~cm}\right)$ where $O O^{\prime}=\frac{3^{3}+243}{135} \mathrm{~cm}$
a) Prove that $O O^{\prime}$ is a natural number to be determined.
b) Find the difference between the two radii.
c) Draw on the adjacent $\operatorname{grid}(\lambda) \&(\Delta)$.
d) At how many points do $(\lambda) \&(\Delta)$ intersect?
e) Deduce the relative positions of $(\lambda) \&(\Delta)$.

$\boldsymbol{E x}$-2: In the adjacent figure (C) is a circle of center O and radius $r=5 \mathrm{~cm}$.

1) Trace a circle $C^{\prime}\left(O^{\prime}, r^{\prime}=3 \mathrm{~cm}\right)$, so that $O O^{\prime}=5.6-2 \times 0.23 \times 10 \mathrm{~cm}$
\qquad
2) Compare $r-r^{\prime}$ with $O O^{\prime}$:
3) Deduce the relative position of $(C) \&\left(C^{\prime}\right)$?

