There are a variety of techniques to write an expression in a product form (factorized)
A. Taking a common factor:

It works when all terms of an expression have a common:

1. Coefficient: that is if the GCD of the coefficients of the expression is different than $\mathbf{1}$.

Expanded form	Factorized form	
$3 x^{2}-9$	Since, $G C D(3 ; 9)=3$ so	$3\left(x^{2}-3\right)$
$21 z^{5}+28 z-7$	Since, $G C D(21 ; 28 ; 7)=7$ so	$7\left(3 z^{5}+4 z-1\right)$
$-\pi y^{2}-2 x \pi$	Since, $G C D(\pi ; 2 \pi)=\pi$ so	$-\pi\left(y^{2}+2 x\right)$

2. Common Term: that is if terms of expression have a common variable or factor.

Expanded form	Factorized form
$x^{2}-12 x$	$x(x-12)$
$3 x^{2} z^{3}+5 x z^{2}-11 x^{2} z^{2}$	$x z^{2}(3 x z+5-11 x)$
$(x-2)\left(x^{2}+2\right)-(x-2)\left(3 x^{2}-5\right)$	$(x-2)\left[\left(x^{2}+2\right)-\left(3 x^{2}-5\right)\right]$

B. By grouping:

If a polynomial has FOUR terms, the expression may be factorable by grouping, This technique works if there is no common factor to all terms. However, a common factor can be found between the two terms and another common factor between the second two terms, then we GROUP the terms and factor out the common factor.

Expanded form	Factorized form
	$1^{\text {st }}$-step: Put in groups $\underbrace{a c+a d}_{1^{1+}-\text { Group }}+\underbrace{b c+b d}_{2^{n d}-\text {-Group }}$
$a c+a d+b c+b d$	$2^{\text {nd }}$-Step:Take common $a(c+d)+b(c+d)$
	$3^{\text {rd }}$-step:Factor out again $(c+d)(a+b)$

C. Using remarkable identities:

Frequently used identities

Description	Expanded form	Factorized form
Difference of two squares:	$a^{2}-b^{2}$	$(a-b)(a+b)$
Square of sum:	$a^{2}+2 a b+b^{2}$	$(a+b)^{2}$
Square of difference:	$a^{2}-2 a b+b^{2}$	$(a-b)^{2}$
Difference of two cubes:	$a^{3}-b^{3}$	$(a-b)\left(a^{2}+a b+b^{2}\right)$
Sum of two cubes:	$a^{3}+b^{3}$	$(a+b)\left(a^{2}-a b+b^{2}\right)$
Cube of sum:	$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$	$(a+b)^{3}$
Cube of difference:	$a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$	$(a-b)^{3}$

D. Using trial and error technique:

It is used only in case if the expression is of the form: $1 x^{2}+b x+c$.

E. Perfect squaring technique:

It is used only in case if the expression is of the form: $a x^{2}+b x+c$.

Expanded form	Factorized form	Application
$a x^{2}$	$\boldsymbol{1}^{\text {st }}$-step: If $a>1$ then take it as a common factor if not, do the other steps: $a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)$. $2^{\text {nd }}$-Step: Write expression: $a\left[\begin{array}{ll}(x & \left.)^{2}+\frac{c}{a}\right]\end{array}\right.$. $3^{\text {rd }}$-step: Always insert sign of b next to x. $4^{\text {th }}$-step: Divide the term $\frac{b}{a}$ by 2 to get $\frac{b}{2 a}$ $5^{\text {th }}$-step: Put this term next to $x: a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}\right] .$ $\boldsymbol{\sigma}^{\text {th }}$-step: Always subtract the square of, $\frac{b}{2 a} \text { from } \frac{c}{a}: a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}\right]$	$\begin{aligned} & 3 x^{2}-12 x-4 \\ & =3\left[x^{2}-4 x-\frac{4}{3}\right] \\ & =3\left[x^{2}-4 x \ldots \ldots \ldots-\frac{4}{3}\right] \\ & =3\left[x^{2}-4 x+\ldots-\ldots-\frac{4}{3}\right] \\ & =3[\underbrace{x^{2}-4 x+\left(\frac{4}{2}\right)^{2}}-\left(\frac{4}{2}\right)^{2}-\frac{4}{3}] \\ & =3\left[\left(x-\frac{4}{2}\right)^{2}-4-\frac{4}{3}\right] \end{aligned}$

Expanding binomials of the form $(x+y)^{n}$

Pascal's Triangle is a technique that serves best in determining the coefficients of the expanded form of a binomial.
$1^{\text {st }} 8$ rows of Pascal's Triangle (which was known to Omar Khayyam before 500 years) A usage of Pascal's Triangle (Out of many other important usages)

Application

$$
\begin{aligned}
& (x+y)^{0}=\square 1 \\
& (x+y)^{1}= \\
& (x+y)^{2}= \\
& (x+y)^{3}= \\
& (x+y)^{4}=1 x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+1 y^{4} \\
& (x+y)^{5}=1 x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+1 y^{5}
\end{aligned}
$$

