Al Mahdi High	Mathematics	10 th -Grade.
Name:	"Factorizing Techniques"	E.S-1

<u>There are a variety of techniques to write an expression in a product form (factorized)</u>

- A. Taking a common factor:
 - It works when **all terms** of an expression have a common:
 - 1. *Coefficient*: that is if the GCD of the coefficients of the expression is different than 1.

Expanded form	Factorized form			
$3x^2 - 9$	Since, $GCD(3;9) = 3$ so	$3(x^2-3)$		
$21z^5 + 28z - 7$	Since, $GCD(21;28;7) = 7$ so	$7(3z^5+4z-1)$		
$-\pi y^2 - 2x\pi$	Since, $GCD(\pi; 2\pi) = \pi$ so	$-\pi(y^2+2x)$		

2. Common Term: that is if terms of expression have a common variable or factor.

	÷
Expanded form	Factorized form
$x^{2}-12x$	x(x-12)
$3x^2z^3 + 5xz^2 - 11x^2z^2$	$xz^2(3xz+5-11x)$
$(x-2)(x^{2}+2)-(x-2)(3x^{2}-5)$	$(x-2)[(x^2+2)-(3x^2-5)]$

B. By grouping:

If a polynomial has *FOUR* terms, the expression may be factorable by grouping, This technique works if there is no common factor to all terms. However, a common factor can be found between the two terms and another common factor between the second two terms, then we *GROUP* the terms and factor out the common factor.

Expanded form	Factorized form
ac + ad + bc + bd	1 st -step: Put in groups $ac + ad + bc + bd$ 1 st -Group 2^{nd} -Step: Take common $a(c + d) + b(c + d)$ 3 rd -step: Factor out again $(c + d)(a + b)$

C. Using remarkable identities:

Frequently used identities

Description	Expanded form	Factorized form
Difference of two	a^2-b^2	(a-b)(a+b)
squares:	<i>u</i> - <i>v</i>	(4 0)(4 0)
Square of sum:	$a^2 + 2ab + b^2$	$(a+b)^2$
Square of difference:	$a^2 - 2ab + b^2$	$(a-b)^2$
Difference of two cubes:	a^3-b^3	$(a-b)(a^2+ab+b^2)$
Sum of two cubes:	$a^{3} + b^{3}$	$(a+b)(a^2-ab+b^2)$
Cube of sum:	$a^3 + 3a^2b + 3ab^2 + b^3$	$(a+b)^3$
Cube of difference:	$a^3 - 3a^2b + 3ab^2 - b^3$	$(a-b)^3$

10th Grade.

Mathematics E.S.1. Reviewing Factorization Techniques

D. Using trial and error technique:

It is used o	only in ca	se if the exn	ression is o	f the form.	$1x^2 + bx + c.$
It is used t	лпу m ca	зе п ше ехрі	0551011 15 0	i une iorini.	$I_{\lambda} + D_{\lambda} + C.$

Expanded form	Factorized form	Application
-	<i>Factorized form</i> 1 st -step: Put in product form: $(x)(x)$ $x^{1^{st}-factor 2^{nd}-factor}$ 2 nd -Step: Check the sign of c: \therefore If the sign of c is \oplus ve, then: \Rightarrow Find a pair of numbers in which their: $-$ Product is equal to c. That is, $c = r \times n$. - And sum is equal to b. That is, $b = r + n$. \Rightarrow If the sign of b is \oplus ve, then write $(x + r)(x + n)$. \Rightarrow If sign of b is $-ve$, then write $(x - r)(x - n)$. \Rightarrow If the sign of c is $-ve$, then: \Rightarrow Find a pair of numbers in which their: $-$ Product is equal to c. That is, $c = r \times n$.	$x^{2}-5x+6$ $1) (x)(x)$ $2) c = +6is \oplus ve$ $\Rightarrow 6 = \begin{cases} 6 \times 1 \\ 3 \times 2 \end{cases}$ $so, use 3 + 2 = 5$ $3) (x 3)(x 2)$ $but, we need - 5$
- And difference is equal to b. That is, $b = r - n$.	so, -3 + (-2) = -5 ∴ $(x - 3)(x - 2)$	
	3rd-step: Insert numbers and signs in factors. $(x \ r)(x \ n)$	

E. Perfect squaring technique:

It is used only in case if the expression is of the form: $ax^2 + bx + c$.

Expanded form	Factorized form	Application
	I^{st} -step: If $a > 1$ then take it as a common	
	a = a	$=3\left\lfloor x^2 - 4x - \frac{4}{3} \right\rfloor$
	2^{<i>nd</i>}-Step: Write expression: $a\left[(x \)^2 + \frac{c}{a}\right]$.	$=3\left\lfloor x^2 - 4x \dots - \frac{4}{3} \right\rfloor$
	3^{rd} -step: Always insert sign of b next to x.	$=3\left[x^{2}-4x+\frac{4}{3}\right]$
$ax^2 + bx + c$.	4 th -step: Divide the term $\frac{b}{a}by 2$ to get $\frac{b}{2a}$	
	5 th -step: Put this term next to	$= 3 \left x^{2} - 4x + \left(\frac{4}{2}\right)^{2} - \left(\frac{4}{2}\right)^{2} - \frac{4}{3} \right $
	$x: a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{c}{a} \right].$	
	6 th -step: Always subtract the square of,	$=3\left[\left(x-\frac{4}{2}\right)^{2}-4-\frac{4}{3}\right]$
	$\frac{b}{2a} \text{ from } \frac{c}{a} : a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{c}{a} - \left(\frac{b}{2a} \right)^2 \right].$	
10 th Grade.	Mathematics E.S.1. Reviewing Factoriza	ation Techniques Page 2 of 4

' Graae. 10

Matnematics E.S.I. Reviewing Factorization Techniques

Mathematics E.S.1. Reviewing Factorization Techniques

Page 3 of 4

Expanding binomials of the form $(x + y)^n$

Pascal's Triangle is a technique that serves best in determining the coefficients of the expanded form of a binomial.

1st 8 rows of *Pascal's Triangle* (which was known to *Omar Khayyam* before 500 years) A usage of *Pascal's Triangle* (Out of many other important usages)

Anntingtion									
Application									
$(x+y)^0 =$			1						
$(x+y)^1 =$		1 <i>x</i>	+	1 <i>y</i>					
$(x+y)^2 =$	$1x^2$	+	2xy	+	$1y^2$				
$(x+y)^3 = 1x^2$		$3x^2y$	+	$3xy^2$	+	$1y^3$			
$(x+y)^4 = 1x^4 +$	$4x^3y$	+	$6x^2y^2$	+	$4xy^3$	+	$1y^4$		
$(x+y)^5 = 1x^5 + 5x^4$	y +	$10x^3y^2$	+	$10x^2y^3$	+	$5xy^4$	+	$1y^5$	

10th Grade.