qLycée Des Arts	Mathematics	$8^{\text {th}}$-Grade
Name:	"Geometric Formulas"	E.S-2.

Areas, Perimeters of Plane figures

Square		Area is: $A=s \times s=s^{2}$.
		Perimeter is: $P=4 s$.

$8^{\text {th }}$-Grade.

Volume and Surface area of Sofid figures

| Rectangular
 prism |
| :---: | :---: | :---: | :---: |
| |
| |
| Cone |

12.2Area of a Triangle - by Heron's Formula

Note that:
P is perimeter
A is area
l is length
w is width
s is side
d is the diagonal

Heron was bom in about $10 . \mathrm{D}$ possibly indelexardria in Egppt. He worked in applied mathematics. His works on mathernatical and rhysical subjects areso numerous and varied that he is considered to be an encyclopedic writer in these fields. His geometrical works deal largely with problems on mensuration written in three books. Book I deals with the area of squares, rectangles, triangles, trapezoids (trapezia), Various other specialised quadiatern, gerived the famous formula for the book, Hero derived the famous formula for the drea of a trianges in terms of its three sides.

Heron ($10 \mathrm{AD}-75 \mathrm{AD}$)
Fig. 12.4

The formula given by Heron about the area of a triangle, is also known as Hero's formula. It is stated as:

```
Area of a triangle }=\sqrt{}{s(s-a)(s-b)(s-c)}\quad KII
```

where a, b and c are the sides of the triangle, and $s=$ semi-perimeter i.e, half the
perimeter of the triangle $=\frac{a+b \div c}{2}$,
This formula is helpful where it is not possible to find the height of the tri angle easily. Let us apply it to calculate the area of the triangular park ABC , mentioned above (see Fig, 12.5).
Let us take $a=40 \mathrm{~m}, b=24 \mathrm{~m}, \mathrm{c}=32 \mathrm{~m}$,
so that we have $s=\frac{40 \div 24 \div 32}{2} \mathrm{~m}=48 \mathrm{~m}$.
$8^{\text {th }}$-Grade.
Mathematics-Geometric Areas

