

9th- Grade.

Mathematics E.S-2. General Flash Back

Page **1** of **9**

IV- How to prove two straight lines parallel?

a- If (d_1) & (d_2) are perpendicular to a third line (d_3) , then (d_1) and (d_2) are parallel. <u>Thus</u>, two st. lines perpendicular to a third line are parallel.

b- If (d_1) & (d_2) are any two parallel lines, then every line (d_3) parallel (d_1) , is parallel to (d_2) . <u>Thus</u>, a st. line parallel to one of two parallel lines is parallel to the other.

c- If (d_1) & (d_2) are any two perpendicular lines, then every line (d_3) perpendicular (d_1) is parallel to (d_2) .

Thus, a st. line perpendicular to one of two perpendicular lines is parallel to the other.

V- How to prove two straight lines intersecting ?

If $(d_1) \& (d_2)$ are any two parallel lines, then every line (d_3) intersects (d_1) , must intersect (d_2) . <u>Thus</u>, a st. line intersecting one of two parallel lines intersects the other.

VI- Notion about Angles:

A. Acute and obtuse angles:

An angle α is said to be <u>acute</u> , if its measure is between 0° and 90°.	An angle β is said to be <u>obtuse</u> , if its measure is between 90° and 180°.
α	β
i.e. $0^{\circ} \langle \alpha \langle 90^{\circ} \rangle$	<i>i.e.</i> 90° $\langle \beta \langle 180^{\circ} \rangle$

B. Complementary and supplementary angles:

- C. Corresponding, alternating, and vertically opposite angles:
 - a. <u>Corresponding angles:</u>

Corresponding Angles	Equal Corresponding Angles	
<i>If</i> two lines are crossed by a <i>transversal</i> , <i>then</i> the angles formed in the <i>matching corners</i> are <i>non-equal</i> corresponding angles	Corresponding angles are <i>equal if and only if</i> they are enclosed between <i>parallel</i> lines.	
e f g h	$ \begin{array}{c} x\\ u\\ \mu\\ z\\ z\\ \mu\\ y\\ \mu\\ \mu\\$	
$IF \frac{(uv) \ (zt), \&}{(xy) \text{ is a transversal}}, then we have \begin{cases} \alpha; \alpha_1 \\ \beta; \beta_1 \end{cases} \& \begin{cases} r; r_1 \\ \theta; \theta_1 \end{cases} (are equal corresponding angles)$		
TO look for corresponding angles search for the following figures		

Alternating angles: We distinguish two types of *equal* alternating angles:
 Alternating angles are *equal if and only if* they are enclosed between *parallel* lines.

	Analytic approach	Geometric approach
Alternating interior angles	$IF \frac{(xy) \ (uv), \& (mn) }{is \ a \ transversal}, then \begin{cases} \alpha \& \beta \ are \ equal \\ alter. interior \ angles \end{cases}$	$\frac{x}{u}$
$\begin{array}{c} Alternating\\ exterior angles \end{array} IF \begin{array}{c} (xy) \parallel (uv), \&(mn)\\ is a transversal \end{array} \right\}, then \begin{cases} \varphi \& \theta \ are equal\\ alter. exterior angles \end{cases} \begin{array}{c} x \\ \varphi \\ u \\ u \\ v \\ n \\ \end{array}$		
TO look for alternating angles search for the following figures		
Alter		rnating exterior angles
	Z- SHAPE	Stair-SHAPE

c. <u>Vertically opposite angles</u>: are formed by two intersecting lines.

Analytic approach	<i>IF</i> (<i>xy</i>)&(<i>uv</i>) are two intersecting lines , then $\begin{cases} \hat{A}_1 = \hat{A}_3 \\ \hat{A}_2 = \hat{A}_4 \end{cases}$ (vertically opp. angles)
Geometric approach	

D. Angles with their sides respectively parallel:

Two angles (acute or obtuse) with their sides respectively parallel, are *equal*.

Conclusion: Angles enclosed between parallel lines are equal.

E. Angles with their sides respectively perpendicular:

Two angles (acute or obtuse) with their sides respectively perpendicular are equal.

Conclusion: Angles with their sides (arms) mutually perpendicular are equal.

VII- <u>Relative positions of lines and angles</u>:

a. Co-interior angles

b. Bisectors of two co-interior angles

c. Point on a bisector of an angle:

d. Exterior angle in a triangle:

e. Bisectors of two adjacent supplementary angles:

9th- Grade.

VIII- <u>Remarkable lines</u>:

- *1.* <u>Median</u>; is a line that divides a segment into two equal parts.
- 2. <u>Altitude (*height*</u>): or foot of perpendicular is a line that falls perpendicularly on a segment.
- 3. <u>Perpendicular bisector</u>: is a line that both bisects & falls perpendicularly on a segment.

IX- <u>Remarkable points in a triangle</u>:

a- Center of gravity or centroid: is the intersection of medians in a triangle.

Properties	Geometric figure	Uses
The centroid divides each median in the ratio $\frac{2}{3}$ starting from the vertex <i>That is</i> ; $AG = (2/3) AA'$ A'G = (1/3) AA' AG = 2 A'G	B A'I C	<i>Center of mass</i> is a point at which the mass of an object is concentrated.

b- Orthocenter: is the intersection point of the altitudes in a triangle.

- *c- Circumcenter or center of the circumscribed circle:* is the intersection point of the perpendicular bisector.
 - ✓ <u>Uses</u>: The *circumcenter* is a point at which we can plot the center of the circle that passes through the three vertices of a given triangle.

d- Incenter or the center of the inscribed circle: is the intersection point of the bisectors of the angles in a triangle.

✓ <u>Uses</u>: The *incenter* is a point at which we can plot the center of the circle that remains tangent to all three sides of the given triangle.

3- Midpoint theorem in a trapezoid:

4- <u>Converse of midpoint theorem in a trapezoid:</u>

XI- "Symmetry":

a. <u>Symmetry with respect to a line</u>:

A point A is said to be symmetric to another point B w.r.t a line (l), if (l) is the perpendicular bisector of [AB].

, then B'C' = 2 cm.

, then $B'\hat{C}'A'=35^{\circ}$.

, then $A'_{,,,}C' \& D'$ are collinear.

9th- Grade.

3 - BC = 2 cm

 $5 - B\hat{C}A = 35^{\circ}$.

4 - A, C & D are collinear