9 Lycée Des Arts \quad Mathematics \quad 9th_Grade

I- Euclidian postulate: From any point " A " distinct (outside) from any line $\left(d_{1}\right)$, we can draw one and only one line $\left(d_{2}\right)$ parallel to $\left(d_{1}\right)$.

II- Relative positions of straight Lines : Any set of straight lines in a plane can be
a. Parallel: Two lines are parallel, if there is no point of intersection between them.

b. Confounded: Two or more lines are confounded, if they have more than one point of intersection.
$\left(D_{1}\right)$
c. Intersecting: Two or more lines are intersecting, if they have one common point, called the intersection point.

III- How to prove two straight fines Perpendicular ?
i - If $\left(d_{1}\right) \&\left(d_{2}\right)$ are any two parallel lines, then every line $\left(d_{3}\right)$ perpendicular to $\left(d_{1}\right)$ is perpendicular to $\left(d_{2}\right)$.
Thus, a st. line perpendicular to one of two parallel lines is perpendicular to the other.

ii- If $\left(d_{1}\right) \&\left(d_{2}\right)$ are any two perpendicular lines, then every line $\left(d_{3}\right)$ parallel to $\left(d_{1}\right)$, is perpendicular to $\left(d_{2}\right)$.
Thus, a st. line parallel to one of two perpendicular lines is perpendicular to the other.
i.e. if, $\left.\begin{array}{r}\left(d_{1}\right) \perp\left(d_{2}\right) \\ \&\left(d_{1}\right) \|\left(d_{3}\right)\end{array}\right\}$, then $\left(d_{2}\right) \perp\left(d_{3}\right)$.

$9^{\text {th }}$ - Grade.

IV - How to prove two straight fines parallel ?

\boldsymbol{a} - If $\left(d_{1}\right) \&\left(d_{2}\right)$ are perpendicular to a third line $\left(d_{3}\right)$, then $\left(d_{1}\right)$ and $\left(d_{2}\right)$ are parallel.
Thus, two st. lines perpendicular to a third line are parallel.
i.e. if, $\left.\begin{array}{c}\left(d_{1}\right) \perp\left(d_{3}\right) \\ \&\left(d_{2}\right) \perp\left(d_{3}\right)\end{array}\right\}$, then $\left(d_{1}\right) \|\left(d_{2}\right)$.

$\left(d_{1}\right) \xrightarrow{+}$
, then
$\left(d_{2}\right)$

\boldsymbol{b} - If $\left(d_{1}\right) \&\left(d_{2}\right)$ are any two parallel lines, then every line $\left(d_{3}\right)$ parallel $\left(d_{1}\right)$, is parallel to $\left(d_{2}\right)$. Thus, a st. line parallel to one of two parallel lines is parallel to the other.
$\left.\begin{array}{r}\quad\left(d_{1}\right) \|\left(d_{2}\right) \\ \&\left(d_{1}\right) \|\left(d_{3}\right)\end{array}\right\}$, then $\left(d_{2}\right) \|\left(d_{3}\right)$.

\boldsymbol{c} - If $\left(d_{l}\right) \&\left(d_{2}\right)$ are any two perpendicular lines, then every line $\left(d_{3}\right)$ perpendicular $\left(d_{l}\right)$ is parallel to $\left(d_{2}\right)$.
Thus, a st. line perpendicular to one of two perpendicular lines is parallel to the other.
i.e. if, $\left.\begin{array}{c}\left(d_{1}\right) \perp\left(d_{2}\right) \\ \&\left(d_{1}\right) \perp\left(d_{3}\right)\end{array}\right\}$, then $\left(d_{2}\right) \|\left(d_{3}\right)$.

V- How to prove two straight fine intersecting ?
If $\left(d_{1}\right) \&\left(d_{2}\right)$ are any two parallel lines, then every line $\left(d_{3}\right)$ intersects $\left(d_{1}\right)$, must intersect $\left(\mathrm{d}_{2}\right)$.
Thus, a st. line intersecting one of two parallel lines intersects the other.

VI- Notion about Angles:
A. Acute and obtuse angles:

An angle α is said to be acute, if its measure is between 0° and 90°.	An angle β is said to be obtuse, if its measure is between 90° and 180°.
i.e. $0^{\circ}\left\langle\alpha\left\langle 90^{\circ}\right.\right.$	i.e. $90^{\circ}<\beta<180^{\circ}$

B. Complementary and supplementary angles:

Two or more angles are said to be	Two or more angles are said to be
complementary, if their sum is equal to 90°.	
supplementary, if their sum is equal to 180°.	
i.e. $\alpha+\beta=90^{\circ}$	i.e. $\alpha+\beta=180^{\circ}$

C. Corresponding, alternating, and vertically opposite angles:
a. Corresponding angles:

b. Alternating angles: We distinguish two types of equal alternating angles: Alternating angles are equal if and only if they are enclosed between parallel lines.

c. Vertically opposite angles: are formed by two intersecting lines.
Analytic
approach IF (xy)\&(uv)are two intersecting lines, then $\left\{\begin{array}{l}\hat{A}_{1}=\hat{A}_{3} \\ \hat{A}_{2}=\hat{A}_{4}\end{array}\right\}$ (vertically opp.angles)
D. Angles with their sides respectively parallel:

Two angles (acute or obtuse) with their sides respectively parallel, are equal.

Conclusion: Angles enclosed between parallel lines are equal.
E. Angles with their sides respectively perpendicular:

Two angles (acute or obtuse) with their sides respectively perpendicular are equal.

Conclusion: Angles with their sides (arms) mutually perpendicular are equal.
VII- Relative positions of Lines and angles:
a. Co-interior angles

If $[A x) \|$ [By), then angles formed between them are called co-interior angles
So that, $\alpha+\beta=180^{\circ}$

Note that: The sum of two co-interior angles is $\mathbf{1 8 0}^{\circ}$.

b. Bisectors of two co-interior angles

$I F\left\{\begin{array}{l}{[A x) \|[B y),} \\ {[A F) \text { bisector of } x \hat{A} B,} \\ \&[\mathrm{~B} F) \text { bisector of } y \hat{B} A\end{array}\right\}$ then, $A \hat{F} B=90^{\circ}$.
\quad i.e $[A F) \perp[B F)$

$9^{\text {th }}$ - Grade.

c. Point on a bisector of an angle:

IF $\left\{\begin{array}{l}{[O M) \text { bisector of } x \hat{O} y,} \\ A \text { belongs }[O M), \\ {[A B) \perp[O x),} \\ \&[A C) \perp[O y)\end{array}\right\}$ then, $A B=A C$.
Conclusion: Any point on the bisector of an angle is equidistant from its arms.
d. Exterior angle in a triangle:

e. Bisectors of two adjacent supplementary angles:

VIII- Remarkable Cines:

1. Median: is a line that divides a segment into two equal parts.
2. Altitude (height): or foot of perpendicular is a line that falls perpendicularly on a segment.
3. Perpendicular bisector: is a line that both bisects \& falls perpendicularly on a segment.

IX R Remarkable points in a triangle:
a- Center of gravity or centroid: is the intersection of medians in a triangle.

Properties	Geometric figure	Uses
The centroid divides each median in the ratio $\frac{2}{3}$ starting from the vertex That is; $\begin{aligned} A G & =(2 / 3) A A^{\prime} \\ A^{\prime} G & =(1 / 3) A A^{\prime} \\ A G & =2 A^{\prime} G \end{aligned}$		Center of mass is a point at which the mass of an object is concentrated.

\boldsymbol{b} - Orthocenter: is the intersection point of the altitudes in a triangle.

c- Circumcenter or center of the circumscribed circle: is the intersection point of the perpendicular bisector.
\checkmark Uses: The circumcenter is a point at which we can plot the center of the circle that passes through the three vertices of a given triangle.

d - Incenter or the center of the inscribed circle: is the intersection point of the bisectors of the angles in a triangle.
\checkmark Uses: The incenter is a point at which we can plot the center of the circle that remains tangent to all three sides of the given triangle.

X- Lines joining the midpoints of the sides:

1- Midpoint theorem in a triangle:

Discussion: If $\left\{\begin{array}{l}1-M \text { is the midpoint of }[A B] \text {, and } \\ 2-N \text { is the midpoint of }[A C]\end{array}\right\}$, then $\left\{\begin{array}{l}1-(M N) \|(B C) \\ 2-M N=\frac{1}{2} B C\end{array}\right\}$.

Usage :To $\left\{\begin{array}{l}1-\text { Prove two st.lines parallel. } \\ 2-\text { Find relation between sides. }\end{array}\right.$

2- Converse of midpoint theorem in a triangle:
Discussion: If $\left\{\begin{array}{l}1-P \text { is midpoint of }[A B], \\ 2-(P \mathrm{Q}) \|(B C)\end{array}\right\}$, then $\left\{\begin{array}{l}1-Q \text { is the midpoint of }[A C] \\ 2-P Q=\frac{1}{2} B C\end{array}\right\}$.

$$
\text { Usage }: T o\left\{\begin{array}{l}
1-\text { Prove midpoint. } \\
2-\text { Find relation between sides. }
\end{array}\right.
$$

3- Midpoint theorem in a trapezoid:

Analytic approach	Geometric approach	
If $\left\{\begin{array}{c}R \text { is the midpoint of }[A D], \\ \& N \text { is the midpoint of }[B C]\end{array}\right\}$,		
then, $\left\{\begin{array}{l}1-(R N) \\|(A B) \&(C D) \\ 2-R N=\frac{(A B+C D)}{2}\end{array}\right\}$.		

4- Converse of midpoint theorem in a trapezoid:

XI- "Symmetry":

a. Symmetry with respect to a line:

A point \boldsymbol{A} is said to be symmetric to another point \boldsymbol{B} w.r.t a line (\boldsymbol{l}), if (\boldsymbol{l}) is the perpendicular bisector of $[\boldsymbol{A B}]$.

b. Symmetry with respect to a point:

\boldsymbol{A} is the symm. of \boldsymbol{B} w.r.t point \boldsymbol{M}, if \boldsymbol{M} is the midpoint of $[\boldsymbol{A B}]$.

c. Properties of symmetry:

Symmetry preserves:
1- Midpoint.
2- Parallelism.
3- Length.
4- Collinearity.
5- Measure of angles.
6- Area.

$\not \subset \mathcal{N}$ ote that: Since the left figure is symmetric to the right figure with respect to st. line (d), Then \boldsymbol{A} is symmetric to \boldsymbol{A}^{\prime} w.r.t (\boldsymbol{d}) and similarly for all the above points,

$$
\begin{array}{ll}
1-\text { Gismipt of }[A B] & \text {,then } G^{\prime} \text { is mipt of }\left[A^{\prime} B^{\prime}\right] . \\
2-(\mathrm{AB}) \|(D H) & \text {,then }\left(A^{\prime} B^{\prime}\right) \|\left(D^{\prime} H^{\prime}\right) . \\
3-\mathrm{BC}=2 \mathrm{~cm} & \text {,then } B^{\prime} C^{\prime}=2 \mathrm{~cm} . \\
4-A, C \& D \text { are collinear } & \text {,then } A^{\prime},, C^{\prime} \& D^{\prime} \text { are collinear. } \\
5-B \hat{C} A=35^{\circ} . & \text {,then } B^{\prime} \hat{C}^{\prime} A^{\prime}=35^{\circ} .
\end{array}
$$

