AL Mandi High
Name:

Sets of numbers: numbers are classified into sets (groups) according to their purpose.

1. Natural numbers:

When you are counting the number of pages of a book or any other thing we use:

$$
0,1,2,3,4,5, \ldots \text { etc. }
$$

The set of natural numbers is denoted by: $\mathbb{N}=\{0,1,2,3,4,5, \ldots$.
$\underline{E x}_{l}$: Solve the following equations in \mathbb{N} and what do you notice: $\begin{aligned} & x+3=5 \\ & 2 x+5=3 .\end{aligned}$

2. Integers:

As you noticed, from the above example that some equations of the form $x+a=b$, where $a \& b$ belong to \mathbb{N} cannot be solved in the set \mathbb{N}. So we will extend the set \mathbb{N} to the set of integers \mathbb{Z}, which stands for Zahlen and consists of the set \mathbb{N} and its opposite.
In other words: $\quad \mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$.

$>$ Notice that: $\mathbb{N} \subset \mathbb{Z}$
$\underline{E x_{2}}:$ Solve the following equations in $\mathbb{Z}: \quad x^{2}-4=0, \quad 2 x+3=0$.

3. Rational numbers:

\mathbb{Z}, is insufficient to solve some equations of the form $a x+b=0$, where $a \& b$ belong to \mathbb{Z}.
So, we will extend the set \mathbb{Z} into the set of rational numbers.
The word rational is derived from ratio. So, we can deduce that any number that can be written in the ratio form, $\frac{a}{b}$, where $a \& b$ are integers such that $b \neq 0$ is said to be a rational number.
The set of rational numbers includes numbers of the form:

$$
\begin{aligned}
& \mathbb{Q}=\left\{\ldots,-\frac{1}{3},-\frac{1}{2},-\frac{1}{1}, 0, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}, \ldots\right\} \\
& \mathbb{Q}=\left\{x \left\lvert\, x=\frac{a}{b}\right., \forall a \in Z \& b \in Z^{*}\right\} \text { Incomprehension. }
\end{aligned}
$$

$>$ Notice that: $: \mathbb{Z} \subset \mathbb{Q}$

4. Irrational numbers:

Are numbers that can't be written in the form of a ratio, $\frac{a}{b}$ where $a \& b$ belong to \mathbb{Z} and $b \neq 0$.
Common forms of irrational numbers:

$$
\text { ß } \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6} \ldots
$$

ह $\pi \approx 3.1415$..
® Numbers, in decimal form with infinite non periodic decimal part. E.g:7.9425721...

${ }^{\wedge}>$ How to represent an irrational number on a number line?

To represent a number of the form: \sqrt{a}
1- Square the given number to get a.
2- Place on y-axis a point A so that $O A=a \mathrm{~cm}$.
3- Always place on y-axis from below a point B so that $O B=1 \mathrm{~cm}$.
4- Trace a circle whose diameter is $[A B]$.
5- The intersection of the circle with the $\oplus v e x$-axis is the position of \sqrt{a}

5. Real numbers:

Is the set of all numbers, it includes all of the above sets, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and the set of irrational numbers.

This set includes numbers of the form: $\mathfrak{R}=\left\{\ldots,-2,-\frac{1}{2}, 0,1, \sqrt{2}, \pi, 4.5 \ldots\right\}$

SOte that:

IJ - If a set of numbers is raised to the symbol "*" "star" then this means that it is the same set except we exclude from it zero.

$$
\begin{aligned}
& N^{*}=\{1,2,3,4, \ldots\} \\
& N^{*}=N-\{0\}
\end{aligned}
$$

IIIJ - If a set of numbers is raised to the symbol " + " "plus" then this means that it includes only the positive part of the set.

$$
\begin{aligned}
Z^{+} & =\{0,1,2,3, \ldots\} \\
Z^{+} & =\{x \mid x \in N, \forall x \geq 0\}
\end{aligned}
$$

$\mathfrak{I} \mathfrak{I} I \mathfrak{I}$ - If a set of numbers is raised to the symbol " -" "minus" then this means that it includes only the negative part of the set.

$$
\begin{aligned}
& Z^{-}=\{\ldots,-3,-2,-1,0\} \\
& Z^{-}=\{x \mid x \in Z, \forall x \leq 0\}
\end{aligned}
$$

Summary of the Cesson using:

(7) Flow Chart:

.) Venn Diagram:

RealNumbers

