

A parallelogram with one right angle is a rectangle

A parallelogram with equal diagonals is a rectangle.

Proving a quadrilateral to be a rhombus starting from

	Definition	Diagonals	Axes of symmetry
In words	A quadrilateral with four equal sides is a rhombus	A quadrilateral whose diagonals are perpendicular and bisect each other is a rhombus	A quadrilateral whose diagonals are axes of symmetry is a rhombus.
Graphically			A

<mark>^BHow to prove a parallelogram a rhombus</mark>?

- *i-* <u>Starting from sides</u>: A parallelogram with two equal consecutive sides is a rhombus.
- *ii- Starting from diagonals:* A parallelogram with perpendicular diagonals is a rhombus.
- *iii-* <u>Starting from diagonals</u>: A parallelogram with one diagonal is a bisector of its one angles is a rhombus.

Proving a quadrilateral to be a square starting from

	Definition	Diagonals	Diagonals & angles
In words	Four equal sides and one right angle	Diagonals are perpendicular, equal and bisect each other	Diagonals are equal and bisect the angles of the quadrilateral
Graphically			

Application

Let *ABCD* be a parallelogram of center T. The following parts are independent:

- 1) If $B\hat{C}D = 135^{\circ}$, then find the measure of $B\hat{A}D$.
- 2) If AC = 5x 12 and AT = 14, then find the value of ^Bx. (check existence).
- 3) If BT = 3x + 1 and BD = 4x + 8, then determine the value of x. (check existence).
- 4) If BC = 4x 7 and AD = 8x 5, then compute the value of x. (check existence).
- 5) If $\hat{BCD} = 3x + 14$ and $\hat{ADC} = x + 10$, then work out the exact value of \hat{ADC} .