

9th- Grade.

Mathematics E.S-3. Flash Back About Arcs and Angles.

Page 1 of 3

ξ Types of exterior angles:

<u>Graphical form</u> :		B B C C	
<i>Description</i> : Exterior angle formed between	Two secants	Two tangents	A secant & a tangent
<u>Measure:</u>	$R\widehat{P}N = mes\frac{\widehat{RN} - \widehat{SK}}{2}$	$B\hat{A}C = mes\frac{\widehat{BNC} - \widehat{BC}}{2}$	$R\widehat{K}N = mes\frac{\widehat{KN} - \widehat{MN}}{2}$
In words	Angle between 2 secants	Angle between two tangents	Angle between a <i>tangent</i> & a <i>secant</i>
	issued from an exterior point equals half the difference of the two intercepted arcs.		

 ξ Angle between tangent and chord:

 $\underline{\mathcal{D}ef}_3$: is an angle issued from the point of tangency and it is equal to half the intercepted arc.

<u>Decoding</u>: If [TN) is a tangent to (c) at T. and [TR] is

a chord of (*c*)

Then,
$$R\hat{T}N = mes\frac{\hat{T}\hat{R}}{2}$$

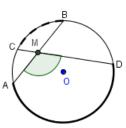
 ξ *Interior angle*: Angle enclosed between *two chords intersecting inside the circle* equals half the sum of the two intercepted arcs.

Decoding: If [AB] and [CD] are chords (given)

Then,
$$A\widehat{M}D = mes \frac{\widehat{AD} + \widehat{BC}}{2}$$

☞ <u>Rule-1:</u>

(Perimeter of a circle): $2\pi R \longrightarrow 360^{\circ}$ (*Greatest angle in a circle*)


(Length of an arc): $L \longrightarrow R \hat{O} N$ (*Central angle corresponding to L*)

Length of an arc =
$$\frac{2\pi R \times R\hat{O}N}{360^{\circ}}$$

▶ * • <u>Rule-2</u>:

(Area of a circle): $\pi R^2 \longrightarrow 360^\circ$ (*Greatest angle in a circle*) (Area of a circular sector): A $\longrightarrow R\hat{O}N$ (*Central angle corresponding to A*)

Area of *a* circular sector = $\frac{\pi R^2 \times R\hat{O}N}{360^\circ}$

Mathematics E.S-3. Flash Back About Arcs and Angles.

Some properties of arcs and angles

<u>Property</u>	Description	If	Then	Graph
1	Arcs included between <i>parallel chords</i> in a circle are <i>equal</i> .	[PE] [RF]	$\widehat{PR} = \widehat{EF}$	
2	Inscribed angles intercepting the same arc are equal	<i>BÊC</i> And <i>BDC</i> intercepts same arc <i>BC</i>	$B\widehat{E}C = B\widehat{D}C$ $= mes\frac{\widehat{BC}}{2}$	
3	Equal chords subtend equal arcs.	Chords <i>KN</i> & <i>IR</i> are equal	Then, $\widehat{KN} = \widehat{IR}$	
4	Equal arcs subtend equal chords	$\widehat{KN} = \widehat{IR}$	<i>Then,</i> Chords <i>KN</i> & <i>IR</i> are equal	
5	<i>Equal angles</i> <i>intercept equal arcs</i> and vice versa	If, $E\hat{F}G = A\hat{B}C.$	Then, <i>ÊG</i> = <i>ÂC</i>	E G C
6	Chords equidistant from the center of the circle are equal.	If $OH = OK$	<i>Then,</i> chords <i>AB</i> & <i>CD</i> are equal	
7	Equal chords are equidistant from the center.	<i>If,</i> Chords <i>QP</i> & <i>RS</i> are equal	Then, $OH = OK$ Or O is equidistant from points $H \&$ K	