AlMahdifigh School	Mathematics	11 th_Grade
Name:........	"Study of Symmetry"	E.S-3

Center of symmetry of a polygon:

I- Consider the following polygons:
a. Determine the center and axis of symmetry for each of the following figures if it exists:

Square

Kite

Regular hyptagon

Center:
Axis:
b. Define a center of symmetry of a polygon:

Center of symmetry of a rational function:

How to prove that a point is a center of symmetry for the graph of a function?
II- On the adjacent figure $A(x ; f(x))$ is any point on the curve of a numerical function f.
a. Determine the values of x for which f is defined.
b. If $C(a ; b)$, is the center of symmetry of C_{f}, then locate the point B the symmetric of A with respect to a point C.
c. As A varies on C_{f}, where would the point B move? \qquad
d. What is the relative position of C w.r.t $[A B]$?
e. Determine the coordinates of B :
f. Deduce the relation: $f(x)+y_{B}=2 b$
g. When is the relation $f(x)+f(2 a-x)=2 b$ valid?

Fig-1.
h. List the steps to prove that a point is a center of symmetry for the graph of a function

How to determine center of symmetry of rational functions?

III- Consider the following table:

a) Complete the above table.
b) What do you notice in the above table?
c) What do you conclude?
d) Does your conclusion work for all degrees for rational functions?

Center of symmetry of a quadratic function:

IV- Consider the function h defined by $h(x)=x^{2}-4 x+1$
a. Is the domain of h centered at origin? Justify.
b. Determine $h^{\prime}(x)$:
c. Find coordinates of S the absolute minimum of C_{h}.
d. Complete the following table of variation:

Values of x	$-\infty$	$+\infty$
$h^{\prime}(x)$		
$h(x)$		

e. Trace on the adjacent grid the curve of h.
f. Does the C_{h}, admit a center of symmetry? Justify.

Fig-2.

Axis of symmetry of a quadratic function:

How to prove that a straight line is an axis of symmetry for the graph of a function?
\boldsymbol{V} - Let $R(x, r(x))$ be a point on the function r defined by its curve C_{r} and the straight line, $(d): x=2$, to be its axis of symmetry.
a. Is the domain of r centered at origin?
b. Use C_{r} to determine $r(x)$.
c. Justify the placement of N the symmetric of R w.r.t (d).
d. Compare the ordinates of $N \& R$.
e. Let $I(a, b)$ be the midpoint of $[R N]$.

1. Locate I.
2. Determine the abscissa of N in terms of a.

f. When is the relation, $r(x)=r(2 a-x)$ valid?
g. How can we prove that the straight line $(d): x=a$ is an axis of symmetry for a function f ? \qquad . \qquad
How to find the equation of the axis of symmetry for the graph of a function?
VI- In the table below $(d),(l) \&(\Delta)$ are the respective axes of symmetries of $C_{f}, C_{g} \& C_{h}$.

Graphs			
Image:	$f(x)=$	$g(x)=$	$h(x)=$
Derivative:	$f^{\prime}(x)=$	$g^{\prime}(x)=$	$h^{\prime}(x)=$
Equate the derivatives to zero.			
Equation of axis of symmetry	(d):	(l) :	(Δ) :

a) Complete the above table.
b) What do you notice in the above table?
c) What do you conclude?

VII- Consider the function p defined by its image $p(x)=-x^{2}-2 x+3$ and its curve C_{p}.

Fig-3.
a. Prove that: $p(x)=-(x+1)^{2}+4$.
b. Deduce the equation of the axis of symmetry of C_{p}
c. Can you use the same technique to find the axis of symmetry of higher polynomial functions? Justify.
d. Determine $p^{\prime}(x)$: \qquad
e. Use the derivative of $p(x)$ to determine the equation of the axis of symmetry of C_{p} :

