Lycée Des Arts
 Name:
 \qquad
 "Midpoint theorem in a triangle"

6(6) Focusing event:
Consider $M, N \& Q$ to be the respectve midponts of sides $[A B],[A C] \&[B C]$ of a tiangle $A B C$:
Where $M N Q B$ and $M N C Q$ are two parallelograms

1) Is it true that $\frac{A M}{A B}=\frac{1}{2}$?
2) Find a ratio of $A N$ to $A C$
3) Compare $M N, B Q \& Q C$:

4) Deduce the ratio of $M N$ to $B C$:

Atliopoint theorem in any triangle

If $A B C$ is a triangle where $M \& N$ are respective midpoints of sides $[A B] \&[A C]$, then

\checkmark The segment joining the midpoints of two sides of a triangle is half the third side $M N=\frac{1}{2} B C$ or $B C=2 M N$.
\checkmark The straight line joining the midpoints of two sides of a triangle is parallel to third side $(M N) / /(B C)$
\checkmark Conditions: To use midpoint theorem we should have:
so Two midpoints
Conditions and \checkmark Usage: We use the midpoint theorem to:
usage: \quad os Find length of segment joining midpoints
\&o Side opposite to the midsegment
\& Prove parallel

Conberse of miopoint thearem

In the adjacent figure M is the midpoint of $[A B]$ and $[M P)$ is parallel to $(B C)$.

\checkmark If a line is issued from the midpoint of a side of a triangle

Conclusion:

 and parallel to the second side, then it must cut the third side at its midpoint.\checkmark Conditions: To use converse of midpoint theorem we should have:

Conditions

and usage: $\quad \checkmark$ Usage: We use the converse of midpoint theorem to:
Go Find midpoint

I- In the adjacent figure M is the midpoint of $[A B]$ and $[M P)$ is parallel to $(B C)$.
Prove that P is the midpoint of $[A C]$.

Solutions:

Focusing event

1. Yes, since $M \& N$ are respective midpoints of sides $[A B] \&[A C]$ (given)
2. Since, N is midpoint of sides $[A C]$ (given)

Then, $\frac{A N}{A B}=\frac{1}{2}$
3. $M N Q B$ is a parallelogram (given)

So, $M N=B Q$ (opposite sides of a parm are equal)
$M N C Q$ is a parallelogram (given)
So, $M N=Q C$ (opposite sides of a parm are equal)
Thus, $M N=B Q=Q C$ (by comparison)
4. Since, $M N=B Q=Q C$ (Proved)

$$
\text { Thus, } \frac{M N}{B C}=\frac{1}{2}
$$

I- In $\triangle A B C$ we have:
M is the midpoint of $[A B]$ (given)
[MP)//(BC) (given)
Thus, P is the midpoint of $[A C]$ (By converse of midpoint theorem in a triangle: line issued from midpoint of a side of a triangle and parallel to the second side, cuts third side at its midpoint)

