

Midpoint theorem in any triangle

If ABC is a triangle where M & N are respective midpoints of sides [AB] & [AC], then

Conclusion:	 ✓ The segment joining the midpoints of two sides of a triangle is half the third side MN = ¹/₂BC or BC = 2MN. ✓ The straight line joining the midpoints of two sides of a triangle is parallel to third side (MN)// (BC)
Conditions and usage:	 ✓ Conditions: To use midpoint theorem we should have: <i>G Two midpoints</i> ✓ Usage: We use the midpoint theorem to: <i>G Find length of segment joining midpoints</i> <i>G Side opposite to the midsegment</i> <i>G Prove parallel</i>

Converse of midpoint theorem

In the adjacent figure M is the midpoint of [AB] and [MP) is parallel to (BC).

✓ If a line is issued from the *midpoint* of a side of a triangle and *parallel* to the second side, then it must cut the third side at its midpoint.

	\checkmark Conditions: To use converse of midpoint theorem we should have	:
Conditions	Ger One midpoint	
	A Parallel form midpoint to third side	
and usage:	\checkmark Usage: We use the converse of midpoint theorem to:	
	Ser Find midpoint	

I- In the adjacent figure *M* is the midpoint of [AB] and [MP) is parallel to (BC).

Prove that P is the midpoint of [AC].

Solutions:

Focusing event

- 1. Yes, since *M* & *N* are respective midpoints of sides [*AB*] & [*AC*] (given)
- 2. Since, *N* is midpoint of sides [*AC*] (given) Then, $\frac{AN}{AB} = \frac{1}{2}$
- 3. MNQB is a parallelogram (given) So, MN = BQ (opposite sides of a parm are equal) MNCQ is a parallelogram (given) So, MN = QC (opposite sides of a parm are equal) Thus, MN = BQ = QC (by comparison)
- 4. Since, MN = BQ = QC (Proved) Thus, $\frac{MN}{BC} = \frac{1}{2}$

In
$$\triangle ABC$$
 we have

Mis the midpoint of [AB] (given)

[MP)//(BC) (given)

Thus, P is the midpoint of [AC] (By converse of midpoint theorem in a triangle: line issued from *midpoint* of a side of a triangle and *parallel* to the second side, cuts third side at its midpoint)

I-