| AlMahdi $\mathcal{H}$ figh School | Mathematics | 11 ${ }^{\text {th }}$-Grade |
| :---: | :---: | :---: |
| Name: . . . . . | "Study of Symmetry" | E.S-4 |

## $\mathcal{S x m m e t r y}$ of a function



1) Graph the given function without absolute value.
2) Find the interval for which $f(x)<0$ (that is curve is below $x$-axis)
3) Reflect this part with respect to the $x$-axis (Find symmetry w.r.t $x$-axis)
$\mathbb{E}_{\mathrm{x}_{1}}$ : Consider the two functions $h \& k$ so that $h(x)=x^{2}-1 \operatorname{and} k(x)=|h(x)|$, graph $h$ then deduce the graph of $k$.

Soln:


## Therefore, we can say that

$k(x)= \begin{cases}h(x) & \text { if } x \in]-\infty ;-1] \cup[1 ; \infty[ \\ -h(x) & \text { if }-1 \leq x \leq 1\end{cases}$
Comparing graphs of $h \& k$ we say:
a) $C_{h} \& C_{k}$ are confounded if $\left.\left.x \in\right]-\infty ;-1\right] \cup[1 ; \infty[$
b) $C_{h} \& C_{k}$ are symmetric w. r.t $x-$ axis $-1 \leq x \leq 1$


To graph any absolute valued functions of the form $g(x)=f(|x|)$

1) Graph the given function without absolute value.
2) Find the interval for which $x>0$
3) Reflect this part with respect to the $y$-axis (find symmetry w.r.t $y$-axis)
$\mathfrak{E} \mathrm{X}$ : Consider the functions $f$ defined by its curve $C_{f} \& g(x)=f(|x|)$, deduce the graph of $g$ using $C_{f}$.
0 Soln:


Comparing graphs of $f \& g$ we say:
i) $\quad C_{f} \& C_{g}$ are confounded for all $x \geq 0$
ii) $C_{f} \& C_{g}$ are symmetric with respect to $y$-axis for all $x \leq 0$


Notice that: $g(x)=f(|x|)$ is an even function.


