Al Mahdi <u>High</u> School Name: Mathematics "Study of Symmetry"

11th-Grade E.S-4

Symmetry of a function				
Parity of a function	Element of symmetry	Relation L condition	Graphical representation	
Even	Symmetric about: y – axis	1- <u>Condition</u> : D_f is centered at origin. 2- <u>Relation</u> : $f(-x) = f(x)$.	C_{f}	
Odd	Symmetric <i>w.r.t</i> origin: <i>O</i> (0;0)	1- <u>Condition</u> : D_f is centered at origin. 2- <u>Relation</u> : $f(-x) = -f(x)$.	$f(x) = x^{3} \mathbf{y}$	
Neither even nor odd	Symmetric <i>w.r.t</i> a vertical st. line of eqn: $x = a$	1- <u>Condition</u> : D_f is centered at $x = a$. 2- <u>Relation</u> : $f(2a - x) = f(x)$	$\begin{array}{c c} y & c \\ \hline y & c \\$	
Neither even nor odd	Symmetric w.r.t a point $M(x, y)$	1- <u>Condition</u> : D_f is centered at $x = a$. 2- <u>Relation</u> : $f(x) + f(2a - x) = 2b$ Proof : Symmetric w.r.t $x = a$ then, 2a = x + x' or x' = 2a - x So, $f(x') = f(2a - x)$ Also, $2b = y + y' or f(x') = 2b - y$ Thus, $f(2a - x) + f(x) = 2b$	$f(x) = x + 2 + \frac{1}{x + 2}$ $Point of symm: \qquad j \qquad x$ $M = (2 \ 0) \qquad 0 \qquad i$	

E.S-4. Summary for symmetry of curves and functions

To graph any absolute valued functions of the form g(x) = |f(x)|

- 1) Graph the given function *without absolute value*.
- 2) *Find* the interval for which f(x) < 0 (that is curve is below x axis)
- 3) **Reflect** this part with respect to the x axis (Find symmetry w.r.t x axis)

 $\mathfrak{E}x_1$: Consider the two functions h & k so that $h(x) = x^2 - 1$ and k(x) = |h(x)|, graph h then deduce the graph of k.

To graph any absolute valued functions of the form g(x) = f(|x|)

- 1) Graph the given function *without absolute value*.
- 2) **Find** the interval for which x > 0
- 3) **Reflect** this part with respect to the y axis (find symmetry w.r.t y axis)

 $\mathfrak{E}x$: Consider the functions f defined by its curve $C_f \& g(x) = f(|x|)$, deduce the graph of g using C_f .

0 Soln: $\frac{Therefore, we can say that}{g(x) = \begin{cases} f(x) & for \ x \ge 0 \\ f(-x) & for \ x \le 0 \end{cases}}$ $g(x) = \begin{cases} f(x) & for \ x \ge 0 \\ f(-x) & for \ x \le 0 \end{cases}$ $Comparing graphs of \ f \& g we say:$ $i) \ C_f \& C_g are confounded for all \ x \ge 0$ $ii) \ C_f \& C_g are symmetric with respect to \ y - axis for all \ x \le 0$ Notice that: g(x) = f(|x|) is an even function.

11th-Grade. Scientific section

E.S-4. Summary for symmetry of curves and functions

	With respect to	Testina symmetry by coordinates	Graphical representation
Symmetry of a Curve	The, $y - axis$	For all points $(x; y) \in C_f$, the points $(-x; y) \in C_f$ as well.	$\begin{array}{c c} y & c_{f} \\ \hline \\ c_{z} \\ c_{z} \\ \hline \\ c_{z} \\ \hline \\ c_{z} \\ \hline \\ c_{z} \\ c_{z} \\ \hline \\ c_{z} \\ c_{z}$
	The, $x - axis$	For all points $(x; y) \in C_f$, the points $(x; -y) \in C_f$ as well.	y (6, 3) $(\overline{3}, \overline{06}, 2, \overline{14})$ \overline{j} $y^2 = 1.5x$ x ($\overline{3}, 06, -2, 14$) ($\overline{3}, 06, -2, 14$) ($\overline{6}, -3$)
	The, origin O(0;0)	For all points $(x; y) \in C_f$, the points $(-x; -y) \in C_f$ as well.	$f(x) = x^{3} \mathbf{y}$
	The, 1^{st} -bisector y = x	For all points $(x; y) \in C_f$, the points $(y; x) \in C_f$ as well.	$y = x$ $(0, 1)$ $(1, 1, 3)$ $y = x$ $(0, 1)$ $(3, 1, 1)$ \vec{y} \vec{y} $(1, 0)$ $(3, -1, -1)$