"Space Geometry"

Draw on your copy book the following solids:

It is a bit difficult to represent solid objects of space in a plane.
To facilitate such a task we will use a drawing technique known as cavalier perspective.
Def: Perspective (view point) is a drawing technique, where a three dimensional object is represented in a plane.

* Types: There are two main types of perspective:

Terminologies:
A plane is an unlimited surface.
Frontal plane: is the plane that is directly in front of observer.
曹 Face: is a subset of a plane.
曷 Perspective:

a) Line: is a line that is perpendicular to frontal plane. Ex: $(B C) \&(A D)$.
b) Angle: angle formed by a horizontal line \& a perspective line.

* Principle rules of Cavalier's perspective:

1- The full lines are seen by the observer.
2- The dotted lines are hidden with respect to the observer
3- Parallelism is conserved, that is parallel lines are presented by parallel straight lines.
4- Midpoints of segments are conserved.
5- Right angles are represented by right angles only in frontal plane.

6- Segments subset, of frontal plane are presented in true dimensions.
7- The ratio of segments having the same direction is preserved.

App-1:

1- Redraw the solid rectangular prism $A B C D E F G H$ in Cavalier perspective:

2- Complete the following table:

Non-hidden	Edges	
	Faces	
Hidden	Edges	
	Faces	

Notion about planes

Definition			Properties
In solid geometry, a plane is a two- dimensional "surface" (similar to the surface of still water, or a sheet of paper, but with no thickness)			A plane is unlimited, that
Representation			

A unique plane can be determined by:
1- Three distinct non-collinear points.

2- A straight line and any point that is not on this straight line.

3- Two intersecting straight lines.

4- Two parallel straight lines.

Denoted $6 y$
(EFG)

$$
\operatorname{pl}\left(M ;\left(d^{\prime}\right)\right)
$$

$\operatorname{pl}\left((d) ;\left(d_{l}\right)\right)$
$\operatorname{pl}\left(\left(d^{\prime}\right) ;\left(d^{\prime \prime}\right)\right)$

Note that: Any geometric figure, such as (triangle, circle, quadrilateral...) determines a plane. App-2:

For the given rectangular prism $A B C D E F G H$ list (more than 2):

1- Straight lines	a) Parallel to $(C G)$	
	b) Subset of plane $(A B C)$	
2- Planes formed of	-Three non collinear points	
	-Two intersecting lines.	
	-(IK) and a point.	
	- Any two parallel st. lines.	

How many planes can be formed of the straight lines $(K J) \&(B F)$?

What can you say about the planes formed in-憩 2)? ?
\qquad
\qquad
\qquad

Relative positions of two straight lines in space

In space two straight lines can be:

	Coplanar		Zon- Coplanar
Definition	Two straight lines are coplanar iff they are subset of the same plane		Two straight lines are non-coplanar (Skew) iff they are subset of two different planes
Types	Parallel	Intersecting	Skew
Graphs			
Analytical study	$\left.\begin{array}{c} (A I) \subset(A K I) \\ (K G) \subset(A K I) \end{array}\right\}$	$\begin{aligned} & \left.\begin{array}{l} (A I) \subset(A B I) \\ (B I) \subset(A B I) \end{array}\right\}, ~ \end{aligned}$ So, $(A I) \&(B I)$ are coplanar $(A I) \cap(B I)=\{I\}$ Thus, $(A I) \&(B I)$ are intersecting	$\left.\begin{array}{l} (G K) \subset(B C G) \\ (B I) \subset(B D I) \end{array}\right\}$ Thus, $(G K) \&(B I)$ are non - coplanar or skew.

App-3:

Consider the tetrahedron $S A B C$ where $M \& N$ are respective midpoints of $[A C] \&[B C]$ $\& P \in(A S)$.

1) Indicate the straight lines that are:

Coplanar	Parallel to $(M N)$	
	Intersecting with $(P N)$	
Non-coplanar	$(M P)$	

2) Are the straight lines $(P N) \&(C S)$ intersecting? Justify.

3) Find $\left\{\begin{array}{l}(M N P) \cap(A B C) \\ (M N P) \cap(A C S) \\ (M N P) \cap(A B S)\end{array}\right.$.

Relative positions of a straight line and a plane in space

In space a straight line can be:

Position	Intersecting with a plane	Parallel to plane	Subset of a plane
$\mathfrak{G r o m e t r i c}$ approach			
Analytic approath	$(Q) \cap(d)=\{G\}$	$(R) \cap(d)=\varnothing$	$(P) \bigcirc(d)=(R N)$

App-4:

In the adjacent figure $I, J \& K$ are the respective midpoints of $[E H],[D C] \&[B C]:$
A- How to prove that a line is parallel to a plane?

1) Starting from the definition, why are $(E F) \&(A B C)$ parallel?

2) Prove that the following are parallel:

$(D H) \&(A B F)$	
$(J K) \&(F G H)$	
$(K I) \&(A B F)$	

Condlusion: How do we prove that any straight line is parallel to a plane?
To prove that a straight line (d) is parallel to a plane (p) :
1- Look for a straight line $\left(d^{\prime}\right) \subset(p)$
2- Prove that $\left(d^{\prime}\right)$ is parallel to (d)
Outcome: $(d) \&(p)$ are parallel.
B- How to prove that a line is perpendicular to a plane?
3) Prove that the following are perpendicular:

$(D H) \&(A B C)$
$(J K) \&(F G H)$

Comflusion: How do we prove that any straight line is parallel to a plane?
To prove that a straight line (d) is perpendicular to a plane (p) :
\&o Look for two intersecting straight lines $(l) \&(\Delta) \subset(p)$
\&o Prove that (d) is perpendicular to both $(l) \&(\Delta)$
Outcome: $(d) \&(p)$ are perpendicular.

Relative positions between two planes in space

Position	Parallel	Confounded	Secant(intersecting)
Gerometric			
approath			

How to prove that two planes are perpendicular?

