

Mathematics "All about Angles"

A. Acute and obtuse angles:

B. <u>Complementary and supplementary angles:</u>

- C. Corresponding, alternating, and vertically opposite angles:
 - a. Corresponding angles:

Corresponding Angles	Equal Corresponding Angles	
<i>If</i> two lines are crossed by a <i>transversal</i> , <i>then</i> the angles formed in the <i>matching</i>	Corresponding angles are <i>equal if and only if</i> they are enclosed between <i>parallel</i> lines	
<i>corners</i> are <i>non-equal</i> corresponding angles		
e g h	x u r r θ r	
$[IF (uv) (zt), \\ (xy) is a transversal], then we have \begin{cases} \alpha; \alpha_1 \\ \beta; \beta_1 \end{cases} \& \begin{cases} r; r_1 \\ \theta; \theta_1 \end{cases} (are equal corresponding angles)$		
TO look for corresponding angles search for the following figures		

Alternating angles: We distinguish two types of *equal* alternating angles:
 Alternating angles are *equal if and only if* they are enclosed between *parallel* lines.

c. <u>Vertically opposite angles</u>: are formed by two intersecting lines.

Analytic approach	<i>IF</i> (<i>xy</i>)&(<i>uv</i>)are two intersecting lines,then $\begin{cases} \hat{A}_1 = \hat{A}_3 \\ \hat{A}_2 = \hat{A}_4 \end{cases}$ (vertically opp. angles)
Geometri c approach	

D. Angles with their sides respectively parallel:

Two angles (acute or obtuse) with their sides respectively parallel, are equal.

Conclusion: Angles enclosed between parallel lines are equal.

E. Angles with their sides respectively perpendicular:

Two angles (acute or obtuse) with their sides respectively perpendicular are *equal*.

Conclusion: Angles with their sides (arms) mutually perpendicular are equal.

- I- <u>Relative positions of lines and angles</u>:
 - a. Co-interior angles

b. Bisectors of two co-interior angles

c. Point on a bisector of an angle:

d. Exterior angle in a triangle:

Rule:	If α is an exterior angle, then $\alpha = \alpha + b$		
Proof:	$\alpha + c = 180^{\circ}$ (Supplementary angles) so, $\alpha = 180^{\circ} - c$ but, $(a + b) = 180^{\circ} - c$ (Sum of angle in a Δ) <i>Thus</i> , $\alpha = a + b$ (By comparison)		
Conclusion: The exterior angle is equal to the sum of the two opposite interior angles.			

e. Bisectors of two adjacent supplementary angles:

