A. Acute and obtuse angles:

An angle α is said to be acute, if its measure is between 0° and 90°.	An angle β is said to be obtuse, if its measure is between 90° and 180°.

B. Complementary and supplementary angles:

Two or more angles are said to be complementary, if their sum is equal to 90	Two or more angles are said to be
supplementary, if their sum is equal to 180°.	

C. Corresponding, alternating, and vertically opposite angles:

a. Corresponding angles:

b. Alternating angles: We distinguish two types of equal alternating angles: Alternating angles are equal if and only if they are enclosed between parallel lines.

c. Vertically opposite angles: are formed by two intersecting lines.

Analytic approach	$I F(x y) \&(u v)$ are two intersecting lines, then $\left\{\begin{array}{l}\hat{A}_{1}=\hat{A}_{3} \\ \hat{A}_{2}=\hat{A}_{4}\end{array}\right\}$ (vertically opp. angles)
Geometri c approach	

D. Angles with their sides respectively parallel:

Two angles (acute or obtuse) with their sides respectively parallel, are equal.

Conclusion: Angles enclosed between parallel lines are equal.
E. Angles with their sides respectively perpendicular:

Two angles (acute or obtuse) with their sides respectively perpendicular are equal.

Conclusion: Angles with their sides (arms) mutually perpendicular are equal.
I- Relative positions of fines and angles:
a. Co-interior angles

If $[A x) \| \quad[B y)$, then angles formed between them are called co-interior angles
So that, $\alpha+\beta=180^{\circ}$

Note that: The sum of two co-interior angles is $\mathbf{1 8 0}^{\circ}$.

b. Bisectors of two co-interior angles

$\text { IF }\left\{\begin{array}{l} {[A x) \\|[B y),} \\ {[A F) \text { bisector of } x \hat{A} B,} \\ {[B F) \text { bisector of } y \hat{B} A} \end{array}\right\} \text { then, } A \hat{F} B=90^{\circ} .$	
Conclusion: Bisectors of two co-interior angles form a right angle.	

$8^{\text {th }}$ - Grade.

c. Point on a bisector of an angle:

d. Exterior angle in a triangle:

e. Bisectors of two adjacent supplementary angles:

Rule:	$I F\left\{\begin{array}{l} x \hat{o ̂ y}+y \hat{o ̂ z}=180^{\circ}(\text { Supt } \\ {[\text { ou bi sec t or of xôy, }} \\ {[\text { ov }) \text { bisector ofyôz }} \end{array}\right.$	then, u ôv $=90^{\circ}$.
Proof:	$x \hat{o ̂} y+y o ̂ z=180^{\circ}($ Given $)$ [Ou)bisector of xôy(Given) so, $x \hat{o ̂ y}=2 u \hat{o} y$ (property of bisector) [Ov)bi sec torofyôz(Given) so, yôz $=2 y \hat{o ̂ v}$ (property of bisector) hence, $2 u \hat{o} y+2 y \hat{o ̂ v}=180^{\circ}$ (By substitution) Thus, uôy $+y \hat{o} v=90^{\circ}$	

Conclusion: The bisectors of two adjacent supplementary angles form a right angle.

