Lyycée Des Arts Mathematics 9th_Grade
Name: "Techniques to find nature of triangles" E.S-6
*"- To prove a triangle isosceles look for one of the following:

- Two equal sides.
- Two equal angles.
- Two equal altitudes.
- A height to be a median at the same time or vice versa.
- A bisector to be a median at the same time or vice versa.
- An axis of symmetry passing through one vertex of the triangle.
- A perpendicular bisector issued from one vertex of the triangle.

$\mathfrak{Z n}$ other moris a triangle is said to be isosieles if:

a. It has two equal sides.	6. It has two equal angles.
C. It has a median as a height or vice versa.	d. It has a median as a bisector of the main vertex or vice versa.
e. through one of its vertices	f. It has a perpendicular bisector passing through one of its vertices
g. It has two equal altitudes	

-) To prove a triangle equilateral look for one of the following:

- Three equal sides.
- Three equal angles.
- Three equal altitudes.
- Two equal sides and 60° angle (Isosceles triangle and a 60° angle).
- Two 60° angles.
- Two heights to be as medians at the same time or vice versa.
- Two bisectors to be as medians at the same time or vice versa.
- Two axes of symmetry passing through two vertices of the triangle.
- Two perpendicular bisectors issued from two vertices of the triangle.

Ifn other mords a triangle is saio to be equilateral if:
(1t has two equal 60 angles

\checkmark How to prove a triangle right?

1- By sum of angles in a triangle:

In triangle $A B C$ we have: $\beta+\gamma=90^{\circ}$. (Given)
But $\alpha+\beta+\gamma=180^{\circ}$. (Sum of angles in a triangle)
So, $\alpha=90^{\circ}$. (By substitution)
Thus, $\triangle A B C$ is right at A.

2- By congruency:

$I F\left\{\begin{array}{l}\text { Triangles } R N K \text { and } A B C \text { are congruent (given or proved) } \\ \text { Triangle } R N K \text { is right at } R(\text { given })\end{array}\right.$
Then, $A B C$ is right at A (by homologous elements)
3- By converse of Pythagoras' Theorem:
Given length of all sides
Then, if $a^{2}=b^{2}+c^{2}$
Thus, $\triangle A B C$ is right at A.
4- By central and inscribed angles:

If G is a point on (C) of diameter $[E F]$
Then, $E \hat{G} F=\frac{1}{2} E \hat{O} F .\left(\right.$ mes of inscribed angle $=\frac{1}{2}$ mes of intercepted arc. $)$
But $E \hat{O} F=180^{\circ}$.
$\Rightarrow E \hat{G} F=\frac{1 \times 180^{\circ}}{2}=90^{\circ}$.
Thus, $\triangle E G F$ is right at G.

5- By Converse of median relative to hypotenuse:
If $A M=\frac{1}{2} B C$. (given or proved)
Or $M A=M B=M C$.

Thus, $\triangle A B C$ is right at A.(By converse of median relative to hypotenuse)

Using angles only	1) $90^{\circ}+60^{\circ}$	
	2) $90^{\circ}+30^{\circ}$	
	3) $30^{\circ}+60^{\circ}$	
Using sides	4) $90^{\circ} \&$ smallest side $=\frac{1}{2}$ longest side 5) $90^{\circ} \&$ longest side $=2$ smallest side	
	6) Converse of pythagorean theorem + 60° or 30°	
	7) Converse of median relative to hypotenuse $+60^{\circ}$ or 30°	

Special lines in special right triangles

In a right isosceles triangle:

\star The side facing 45° angle is expressed as:
$c=\frac{\sqrt{2}}{2} \times h y p$. (Side facing 45° of a right isosceles Δ)
Proof: According to Pythagoras' theorem:
$h y p^{2}=l e g^{2}+l e g^{2}$
$h y p^{2}=c^{2}+c^{2}$
$h y p^{2}=2 c^{2}$
so, $2 c^{2}=h y p^{2}$
$c^{2}=\frac{h y p^{2}}{2}$
$c=\frac{h y p}{\sqrt{2}}$
Thus, $c=\frac{\sqrt{2}}{2} \times h y p$.
it Hypotenuse is expressed as:
hyp $=\sqrt{2} \times c .($ Hypotenuse of a right isosceles $\Delta)$

In a semi equilateral triangle:

\star Side facing $\mathbf{3 0 ^ { \circ }}$ angle is equal to half the hypotenuse Then, $a=\frac{1}{2} \times h y p$. (Side facing 30° of a semi equilateral Δ)
is Side facing 60° angle is expressed as:
$b=\frac{\sqrt{3}}{2} \times h y p$. (Side facing 60° of a semi equilateral Δ)
OR

$$
b=\sqrt{3} \times a .\left(\text { Sides facing } 60^{\circ} \& 30^{\circ} \text { of a semi equilateral } \Delta\right)
$$

is Hypotenuse is expressed as:

$$
h y p=2 \times a .(\text { Hypotenuse of a semi equilateral } \Delta)
$$

No.	Relations	Name of relation	Geometric Figures
1.	$a \times h=b \times c$	Height- Hypotenuse relation	
2.	$b^{2}=m \times a$		
3.	$c^{2}=n \times a$		
4.	$h^{2}=m \times n$		
5.	$a^{2}=b^{2}+c^{2}$	Pythagoras theorem	

