

To prove a triangle **isosceles** look for one of the following:

- Two equal sides.

11

- Two equal angles.
- Two equal altitudes.
- A height to be a median at the same time or vice versa.
- A bisector to be a median at the same time or vice versa.
- An axis of symmetry passing through one vertex of the triangle.
- A perpendicular bisector issued from one vertex of the triangle.

In other words a triangle is said to be isosceles if:

PTo prove a triangle **equilateral** look for one of the following:

- Three equal sides.
- Three equal angles.
- Three equal altitudes.
- Two equal sides and 60° angle (Isosceles triangle and $a60^{\circ}$ angle).
- Two 60° angles.
- Two heights to be as medians at the same time or vice versa.
- Two bisectors to be as medians at the same time or vice versa.
- Two axes of symmetry passing through two vertices of the triangle.
- Two perpendicular bisectors issued from two vertices of the triangle.

In other words a triangle is said to be equilateral if:

9th-Grade.

Using angles only	1) 90° + 60°	A B B C			
	2) 90° + 30°				
	3) 30° + 60°	A 60 8 30° C			
Using sides	4) 90° & smallest side = $\frac{1}{2}$ longest side	A a 2a			
	5) 90° & longest side = 2 smallest side	BC			
	6) Converse of pythagorean theorem + 60° <i>or</i> 30°				
	7) Converse of median relative to hypotenuse + 60° or 30°	Be H M H C			

Special lines in special right triangles

9th-Grade.

9th-Grade.

No.	Relations	Name of relation	Geometric Figures	
1.	$a \times h = b \times c.$	Height- Hypotenuse relation	b b B H a	
2.	$b^2 = m \times a.$	sup	a b	
З.	$c^2 = n \times a.$	ometric me.	h m m c c	
4.	$h^2 = m \times n.$	Ĝe,	B H C	
5.	$a^2 = b^2 + c^2$	Pythagoras theorem	c b c c c c c c c c c c c c c c c c c c	