

Mathematics "All about lines"

- 8th-Grade E.S-7
- *I* <u>Euclidian postulates</u>: From any point "A" distinct (outside) from a straight line (d_1) , we can draw *one and only one* straight line (d_2)

II- <u>Relative positions of straight lines</u> in a plane: Any set of straight lines in a plane can be

	Parallel	Confounded	Intersecting
Analytically	if there is no point of intersection between them	if they admit more than	if they admit one
Graphically	(d_2) (d_1)	(d_2) (d_1)	$(d_2) \qquad (d_1)$

- III- How to prove two straight lines Perpendicular?
 - *i* If (d_1) & (d_2) are any two parallel lines, then every line (d_3) perpendicular to (d_1) is perpendicular to (d_2) .

Thus, a st. line perpendicular to one of two parallel lines is perpendicular to the other.

ii- If (d_1) & (d_2) are any two perpendicular lines, then every line (d_3) parallel to (d_1) , is perpendicular to (d_2) .

Thus, a st. line parallel to one of two perpendicular lines is perpendicular to the other.

IV- How to prove two straight lines parallel?

a- If (d_1) & (d_2) are perpendicular to a third line (d_3) , then (d_1) and (d_2) are parallel. <u>Thus</u>, two st. lines perpendicular to a third line are parallel.

	If	Then
Graphically		(d ₂)
Algebrically	$(d_1) \perp (d_3) \\ (d_2) \perp (d_3) $	$(d_1) \ (d_2).$

b- If (d_1) & (d_2) are any two parallel lines, then every line (d_3) parallel (d_1) , is parallel to (d_2) . <u>Thus</u>, a st. line parallel to one of two parallel lines is parallel to the other.

c- If (d_1) & (d_2) are any two perpendicular lines, then every line (d_3) perpendicular to (d_1) is parallel to (d_2) .

<u>Thus</u>, a st. line perpendicular to one of two perpendicular lines is parallel to the other.

V- How to prove two straight lines intersecting?

If (d_1) & (d_2) are any two parallel lines, then every line (d_3) intersects (d_1) , must intersect (d_2) . *Thus, a st. line intersecting one of two parallel lines intersects the other.*

