

Definition: A trapezoid is a quadrilateral with exactly one pair of its sides parallel.

✓ Vocabulary:

- Bases of a trapezoid: are the parallel sides.
- ♦ Legs of a trapezoid: are the non-parallel sides.
- Solution or mid-segment of a trapezoid: is the segment joining the midpoints of the legs.
- Note that: In a trapezoid diagonals
 - > Are not Equal.
 - > Do not bisect each other they only intersect each other.
- \checkmark Types of a trapezoid:

Isosceles trapezoid:

How to prove a trapezoid Isosceles?

legs is perpendicular to my bases.

(Small-base)

Lea-2

Page 1 of 4

Mathematics E.S-7. Overview about quadrilaterals

Page 2 of 4

How to prove a parallelogram to be a rectangle?

Starting from the

Angles

A parallelogram with one right angle is a rectangle

A parallelogram with equal diagonals is a rectangle.

Diagonals

Proving a quadrilateral to be a rhombus starting from

	Definition	Diagonals	Axes of symmetry
In words	A quadrilateral with four equal sides is a rhombus	A quadrilateral whose diagonals are perpendicular and bisect each other is a rhombus	A quadrilateral whose diagonals are axes of symmetry is a rhombus.
Graphically			

⁶ How to prove a parallelogram a rhombus?

- *i- Starting from sides:* A parallelogram with two equal consecutive sides is a rhombus.
- *ii-* <u>Starting from diagonals</u>: A parallelogram with perpendicular diagonals is a rhombus.
- *iii-* <u>Starting from diagonals</u>: A parallelogram with one diagonal is a bisector of its one angles is a rhombus.

Proving a quadrilateral to be a square starting from

	Definition	Diagonals	Diagonals & angles	
In words	Four equal sides and one right angle	Diagonals are perpendicular, equal and bisect each other	Diagonals are equal and bisect the angles of the quadrilateral	
Graphically		A D C C		

Applications

- *I* Consider the parallelogram *ABCD*.
 - a) Indicate the properties included in the adjacent figure.
 - b) Prove that *ARCN* is a rectangle.
- *II* Let C(O; R) and C'(O'; R) be two intersecting circles.
 - *a*. Draw figure.
 - **b.** (C) & (C') intersect at the points *R* & *N*. What is the nature of the quadrilateral *ORO'N*?
- *III- ROME* is a square of center *N*.
 - *a*. Construct sketch.
 - **b.** Let *J* be any point of [*RM*]. Locate *K* the symmetric of J with respect to *O*.
 - c. What is the nature of quadrilateral *JOKE*?
- *IV- CORE* is a parallelogram such that CO = 2OR.
 - *a*. Sketch the figure.
 - **b.** Let *N* & *K* be the respective midpoints of sides *CO* and *RE*.
 - *i.* Prove that *NORK* and *CNKE* are two rhombuses.
 - *ii.* Show that triangle *COK* is right at *K*.
- *V* Let *ABCD* be a parallelogram of center T. The following parts are independent:
 - 1) If $A\hat{B}C = 135^{\circ}$, then find the measure of $B\hat{A}D$.
 - 2) If AC = 5x 12 and AT = 14, then find the value of x. (check existence).
 - 3) If AB = 12, BC = 9 and $A\hat{B}C = 90^{\circ}$, then calculate the length of *BD*.
 - 4) If BT = 3x + 1 and BD = 4x + 8, then determine the value of x. (check existence).
 - 5) If BC = 4x 7 and AD = 8x 5, then compute the value of x. (check existence).
 - 6) If $\hat{BCD} = 3x + 14$ and $\hat{ADC} = x + 10$, then work out the exact value of \hat{ADC} .

