Lycée Does Arts Mathematics
 Same: "Overview about special quadrilaterals"

Definition: A trapezoid is a quadrilateral with exactly one pair of its sides parallel.
\checkmark Vocabulary:

\Rightarrow Bases of a trapezoid: are the parallel sides.
${ }^{4}$ Legs of a trapezoid: are the non-parallel sides.
${ }^{\Perp}$ Median or mid-segment of a trapezoid: is the segment joining the midpoints of the legs.

(-) Note that: In a trapezoid diagonals
> Are not Equal.
> Do not bisect each other they only intersect eaCh other.

\checkmark Types of a trapezoid:

Isosceles trapezoid:
Whom to prove a trapezoid Isosceles?

Equal legs.

A pair of equal base angles.

Equal diagonals.

Notice that, an isoscles trapezoid admits one axis of symmetry, the perpendicular bisector of the bases.

Admit an axis of symmetry(Perp. bisector of bases).

Admits two pares of opposite supplementary angles

Right trapezoid:I'm a trapezoid in which one of my legs is perpendicular to my bases.

Proving a quadrilateral to be a parallelogram

Starting from

\mathcal{H} ow to prove a quadrilateral a rectangle?

Definition

- A quadrilateral with four equal angles is a rectangle.

Angles

- A quadrilateral with three right angles is a rectangle.

Sides \&L angles $\{$ A quadrilateral with its opposite sides equal or (parallel) and have one right angle is a rectangle.

Diagonals

- A quadrilateral in which its diagonals are equal and bisect each other is a rectangle.

How to prove a parallelogram to be a rectangle?

Starting from the

Angles

A parallelogram with one right angle is a rectangle

Diagonals

A parallelogram with equal diagonals is a rectangle.

Proving a quadrilateral to be a rhombus starting from

	Definition	Diagonals	Axes of symmetry
In words	A quadrilateral with four equal sides is a rhombus	A quadrilateral whose diagonals are perpendicular and bisect each other is a rhombus	A quadrilateral whose diagonals are axes of symmetry is a rhombus.
Graphically	ar		

How to prove a parallelogram a rhombus?
i- Starting from sides: A parallelogram with two equal consecutive sides is a rhombus.
ii- Starting from diagonals: A parallelogram with perpendicular diagonals is a rhombus.
iii- Starting from diagonals: A parallelogram with one diagonal is a bisector of its one angles is a rhombus.

Proving a quadrilateral to be a square starting from

	Definition	Diagonals	Diagonals \& angles
In words	Four equal sides and one right angle	Diagonals are perpendicular, equal and bisect each other	Diagonals are equal and bisect the angles of the quadrilateral

Applications

I- Consider the parallelogram $A B C D$.
a) Indicate the properties included in the adjacent figure.
b) Prove that $A R C N$ is a rectangle.

II- Let $C(O ; R)$ and $C^{\prime}\left(O^{\prime} ; R\right)$ be two intersecting circles.
a. Draw figure.
b. (C) \& ($\left.\mathrm{C}^{\prime}\right)$ intersect at the points $R \& N$. What is the nature of the quadrilateral $O R O^{\prime} N$?

III- ROME is a square of center N.
a. Construct sketch.
b. Let J be any point of $[R M]$. Locate K the symmetric of \mathbf{J} with respect to O.
c. What is the nature of quadrilateral $J O K E$?

IV- CORE is a parallelogram such that $C O=2 O R$.
a. Sketch the figure.
b. Let $N \& K$ be the respective midpoints of sides $C O$ and $R E$.
i. Prove that $N O R K$ and $C N K E$ are two rhombuses.
ii. Show that triangle $C O K$ is right at K.
V - Let $A B C D$ be a parallelogram of center T.
The following parts are independent:

1) If $A \hat{B} C=135^{\circ}$, then find the measure of $B \hat{A} D$.

2) If $A C=5 x-12$ and $A T=14$, then find the value of x.(check existence).
3) If $A B=12, B C=9$ and $A \hat{B} C=90^{\circ}$, then calculate the length of $B D$.
4) If $B T=3 x+1$ and $B D=4 x+8$, then determine the value of x.(check existence).
5) If $B C=4 x-7$ and $A D=8 x-5$, then compute the value of x.(check existence).
6) If $B \hat{C} D=3 x+14$ and $A \hat{D} C=x+10$, then work out the exact value of $A \hat{D} C$.
