9 | 9 Lycée Des Arts | Mathematics | gtin-Grade |
| :--- | :---: | :---: |
| Name:......... | "Arcs and Angles" | E.S-8. |

ξ Central angle:

Def: is an angle whose vertex is the center of the circle and its sides intersect the circle at two distinct points.

RôN is a central angle.

ξ Property: Measure of central angle is equal to measure of the arc it intercepts.

Graphically		Arc $\widehat{R N}$	
In symbols	$A \hat{O} B=m e s \widehat{A B}$	$S \hat{O} K=m e s \widehat{S K}$	$R \hat{O} N=m e s \widehat{R N}$

ξ Inscribed angle:

Def: An inscribed angle is an angle whose vertex is a point on the circle and sides intersect the circle in two distinct points.
$K \hat{R} N$ is an inscribed angle.
Vertex of angle

Circumference of circle
ξ Property-: Measure of inscribed angle equals half measure of intercepted arc.

Graphically				
In symbols	$\begin{gathered} F \hat{A} E=25^{\circ} \\ m e s \widehat{F E}=50^{\circ} \end{gathered}$ So, $F \hat{A} E=\frac{1}{2} m e s \widehat{F E}$	$\begin{gathered} A \widehat{E} C=60^{\circ} \\ m e s \widehat{A C}=120^{\circ} \\ \text { So, } \widehat{A E C}=\frac{1}{2} \text { mes } \widehat{A C} \end{gathered}$	$\begin{gathered} A \widehat{E C}=60^{\circ} \\ m e s \widehat{A C}=120^{\circ} \\ \text { So, } \widehat{A E} C=\frac{1}{2} \text { mes } \widehat{A C} \end{gathered}$	$R \hat{O} N=\operatorname{mes} \widehat{R N}$

ξ Property-3: Measure of the inscribed angle facing the diameter is equal to 90°.
Decoding: If N is a point on (C) and [AB] is a diameter of (C).
then, $A \widehat{N} B=\frac{A \widehat{o} B}{2}=\frac{180^{\circ}}{2}$
Thus, $A \widehat{N} B=90^{\circ}$. (Thales' $5^{\text {th }}$ theorem)
ξ Types of exterior angles:

Graphical form:			
Description: Exterior angle formed between	Two secants	Two tangents	A secant \& a tangent
Me-asure:	$R \widehat{P} N=m e s \frac{\widehat{R N}-\widehat{S K}}{2}$	$B \hat{A C C}=$ mes $\frac{\widehat{B N C}-\widehat{B C}}{2}$	$R \widehat{K} N=m e s \frac{\widehat{R N}-\widehat{M N}}{2}$
In words.	Angle between 2 secants	Angle between two tangents	Angle between a tangent \& a secant
	issued from an exterior point equals half the difference of the two intercepted arcs.		

ξ Angle 6etween tangent and chord:
$\underline{D e f}_{3}:$ is an angle issued from the point of tangency and it is equal to half the intercepted arc.
Decoding: If $[T N)$ is a tangent to (c) at T. and $[T R]$ is

$$
\text { a chord of }(c)
$$

Then, $R \widehat{T} N=$ mes $\frac{\widehat{T R}}{2}$

ξ Interior angle: Angle enclosed between two chords intersecting inside the circle equals half the sum of the two intercepted arcs.

Proof: In triangle ACM we have:
$A \widehat{M} D=M \hat{A} C+A \hat{C} M\left\{\begin{array}{l}\text { (Exterior angle equals sum of } \\ \begin{array}{l}\text { opposite interior angles in a triangle } \\ \text { (flag rule) check E.S-6.) }\end{array} \\ \text { (olear }\end{array}\right.$

But, points $A, M \& B$ are collinear (given)
And, points $C, M \& D$ are collinear (given)
So, $M \hat{A} C=m e s \frac{\widehat{B C}}{2}$ (inscribed angle)
And, $A \hat{C} M=m e s \frac{\widehat{A D}}{2}$ (inscribed angle)
Thus, $A \widehat{M} D=$ mes $\frac{\widehat{A D}+\widehat{B C}}{2}$

Some properties of arcs and angles

Property	Description	If	Then	Graph	
1	Arcs included between parallel chords in a circle are equal.	$[P E] \\|[R F]$	$\widehat{P R}=\widehat{E F}$		
2	Inscribed angles intercepting the same arc are equal	$B \widehat{E} C$ And $B \widehat{D} C$ intercepts same $\operatorname{arc} \widehat{B C}$	$\begin{aligned} & B \hat{E} C=B \widehat{D} C \\ & =\text { mes } \frac{\widehat{B C}}{2} \end{aligned}$		
3	Equal chords subtend equal arcs.	Chords $K N \& I R$ are equal	Then, $\widehat{K N}=\widehat{I R}$		
4	Equal arcs subtend equal chords	$\widehat{K N}=\widehat{I R}$	Then, Chords $K N \& I R$ are equal		
5	Equal angles intercept equal arcs and vice versa	If, $E \widehat{F} G=A \widehat{B} C$.	Then, $\widehat{E G}=$ $\widehat{A C}$		
6	Chords equidistant from the center of the circle are equal.	If $\mathrm{OH}=\mathrm{OK}$	Then, chords $A B \& C D$ are equal		
7	Equal chords are equidistant from the center.	If, Chords $Q P \& R S$ are equal	Then, $O H=O K$ Or O is equidistant from points H \& K		

(Perimeter of a circle): $2 \pi R \longrightarrow 360^{\circ}$ (Greatest angle in a circle)
(Length of an arc): $\quad L \longrightarrow R \hat{O} N($ Central angle corresponding to L)
$\boldsymbol{*}^{*}$ Rule-2:

(Area of a circle): $\quad \pi R^{2} \longrightarrow 360^{\circ}$ (Greatest angle in a circle) (Area of a circular sector): $\mathrm{A} \longrightarrow R \hat{O} N$ (Central angle corresponding to A)

$$
\text { Area of } a \text { circular sector }=\frac{\pi R^{2} \times R \widehat{O} N}{360^{\circ}}
$$

