ξ *Central angle*:

<u>Def</u>: is an angle whose vertex is the center of the circle and its sides intersect the circle at two distinct points.</u>

RÔN is a <u>central</u> angle.

 $\xi \underline{Property}$: Measure of central angle is equal to measure of the arc it intercepts.

 ξ Inscribed angle:

<u>Def</u>: An *inscribed angle* is an angle whose *vertex is a point on the circle* and sides intersect the circle *in two distinct points*.

 $\xi \underline{Property}$: Measure of inscribed angle equals half measure of intercepted arc.

Graphically	(C) 25° 0° E	(C) 0° 60° E 120° C	C 40° 0 E	
In symbols	$F\hat{A}E = 25^{\circ}$ $mes\widehat{F}E = 50^{\circ}$ $So, F\hat{A}E = \frac{1}{2}mes\widehat{F}E$	$A\widehat{E}C = 60^{\circ}$ $mes\widehat{AC} = 120^{\circ}$ $So, \ \widehat{AE}C = \frac{1}{2}mes\widehat{AC}$	$A\widehat{E}C = 60^{\circ}$ $mes\widehat{AC} = 120^{\circ}$ So, $\widehat{AE}C = \frac{1}{2}mes\widehat{AC}$	$R\hat{O}N = mes\widehat{RN}$

 $\xi \underline{Property-3}$: Measure of the *inscribed angle facing the diameter* is equal to 90°.

<u>Decoding</u>: If *N* is *a* point on (*C*)and [*AB*] is a diameter of (*C*).

then,
$$A\widehat{N}B = \frac{A\widehat{O}B}{2} = \frac{180^{\circ}}{2}$$

Thus, $A\widehat{N}B = 90^{\circ}$. (Thales' 5th theorem)

A

Mathematics E.S-8. Arcs and Angles.

ξ Types of exterior angles:

<u> </u>					
<u>Graphical form</u> :	R S K C C C C C	B B B C C			
<i>Description</i> : Exterior angle formed between	Two secants	Two tangents	A secant & a tangent		
<u>Measure:</u>	$R\hat{P}N = mes\frac{\widehat{RN} - \widehat{SK}}{2}$	$B\hat{A}C = mes\frac{\widehat{BNC} - \widehat{BC}}{2}$	$R\widehat{K}N = mes\frac{\widehat{RN} - \widehat{MN}}{2}$		
In words	Angle between 2 secants	Angle between two tangents	Angle between a <i>tangent</i> & a <i>secant</i>		
	issued from an exterior point equals half the difference of the two intercepted arcs.				

 ξ Angle between tangent and chord:

 $\underline{\mathcal{D}ef_3}$: is an angle issued from the point of tangency and it is equal to half the intercepted arc.

<u>Decoding</u>: If [TN) is a tangent to (c) at T. and [TR] is

a chord of (*c*)

Then,
$$R\hat{T}N = mes\frac{\hat{T}\hat{R}}{2}$$

 ξ *Interior angle:* Angle enclosed between *two chords intersecting inside the circle* equals half the sum of the two intercepted arcs.

Proof: In triangle ACM we have:

$$A\widehat{M}D = M\widehat{A}C + A\widehat{C}M \begin{cases} (Exterior angle equals sum of opposite interior angles in a triangle (flag rule) check E.S-6.) \\ But, points A, M & B are collinear (given) \\ And, points C, M & D are collinear (given) \\ So, M\widehat{A}C = mes \frac{\widehat{BC}}{2} (inscribed angle) \\ And, A\widehat{C}M = mes \frac{\widehat{AD}}{2} (inscribed angle) \\ Thus, A\widehat{M}D = mes \frac{\widehat{AD} + \widehat{BC}}{2} \end{cases}$$

Some properties of arcs and angles

<u>Property</u>	Description	If	Then	Graph
1	Arcs included between parallel chords in a circle are equal.	[PE] [RF]	$\widehat{PR} = \widehat{EF}$	
2	Inscribed angles intercepting the same arc are equal	<i>BÊC</i> And <i>BDC</i> intercepts same arc <i>BC</i>	$B\widehat{E}C = B\widehat{D}C$ $= mes\frac{\widehat{BC}}{2}$	
3	Equal chords subtend equal arcs.	Chords <i>KN</i> & <i>IR</i> are equal	Then, $\widehat{KN} = \widehat{IR}$	
4	Equal arcs subtend equal chords	$\widehat{KN} = \widehat{IR}$	<i>Then,</i> Chords <i>KN</i> & <i>IR</i> are equal	
5	<i>Equal angles</i> <i>intercept equal arcs</i> and vice versa	If, $E\hat{F}G = A\hat{B}C.$	Then, <i>ÊG</i> = <i>ÂC</i>	E G C
6	Chords equidistant from the center of the circle are equal.	If $OH = OK$	<i>Then,</i> chords <i>AB</i> & <i>CD</i> are equal	
7	Equal chords are equidistant from the center.	<i>If,</i> Chords <i>QP</i> & <i>RS</i> are equal	Then, $OH = OK$ Or O is equidistant from points $H \&$ K	C P R S

(Perimeter of a circle): $2\pi R \longrightarrow 360^{\circ}$ (*Greatest angle in a circle*)

(Length of an arc): $L \longrightarrow R \hat{O} N$ (*Central angle corresponding to L*)

Length of an arc =
$$\frac{2\pi R \times R\hat{O}N}{360^{\circ}}$$

●[™] ●[™] <u>Rule-2</u>:

(Area of a circle): $\pi R^2 \longrightarrow 360^\circ$ (*Greatest angle in a circle*) (Area of a circular sector): A $\longrightarrow R\hat{O}N$ (*Central angle corresponding to A*)

Area of *a* circular sector = $\frac{\pi R^2 \times R\hat{O}N}{360^\circ}$