		Y
Lycée Des Arts	Mathematics	9 th -Grade.
Name:	"Factorizing Techniques"	E.S-8

There are a variety of techniques to write an expression in a product form (factorized)
 In what follows we will list some common techniques:

A. Taking a common factor:

It works when **all terms** of an expression have a common:

1. *Coefficient*: that is if the GCD of the coefficients of the expression is different than 1.

Expanded form	Factorized form
$3x^2 - 9$	Since, $GCD(3;9) = 3$ so $3(x^2 - 3)$
$21z^5 + 28z - 7$	Since, $GCD(21;28;7) = 7$ so $7(3z^5 + 4z - 1)$
$-\pi y^2 - 2x\pi$	Since, $GCD(\pi; 2\pi) = \pi$ so $-\pi(y^2 + 2x)$

2. Common Term: that is if terms of expression have a common variable or factor.

Expanded form	Factorized form
$x^{2}-12x$	x(x-12)
$3x^2z^3 + 5xz^2 - 11x^2z^2$	$xz^{2}(3xz+5-11x)$
$(x-2)(x^{2}+2)-(x-2)(3x^{2}-5)$	$(x-2)[(x^2+2)-(3x^2-5)]$

B. By grouping:

If a polynomial has *FOUR* terms, the expression may be factorable by grouping, This technique works if there is no common factor to all terms. However, a common factor can be found between the two terms and another common factor between the second two terms, then we *GROUP* the terms and factor out the common factor.

Expanded form	Factorized form
ac + ad + bc + bd	1 st -step: Put in groups $\underbrace{ac + ad}_{1^{st}-Group} + \underbrace{bc + bd}_{2^{nd}-Group}$ 2 nd -Step:Take common $a(c + d) + b(c + d)$ 3 rd -step:Factor out again $(c + d)(a + b)$

C. Using remarkable identities:

Frequently used identities

Description	Expanded form	Factorized form
Difference of two squares	$a^2 - b^2$	(a-b)(a+b)
Square of sum (binomial)	$a^2 + 2ab + b^2$	$(a+b)^2$
Square of difference	$a^2 - 2ab + b^2$	$(a-b)^2$
Difference of two cubes	a^3-b^3	$(a-b)(a^2+ab+b^2)$
Sum of two cubes	$a^{3} + b^{3}$	$(a+b)(a^2-ab+b^2)$
Cube of sum	$a^3 + 3a^2b + 3ab^2 + b^3$	$(a+b)^3$
Cube of difference	$a^3-3a^2b+3ab^2-b^3$	$(a-b)^3$

 9^{th} – Grade.

Mathematics – E.S-8. Factorizing Techniques.

D. Using trial and error technique:

It is used only in	case if the expre	ession is of the	e form: $1x^2 + bx + c$.
2	1		

Expanded form	Factorized form	Application
$form$ $1x^2 + bx + c.$	Interventised form: I^{st} -step: Put in product form: $(x)(x)_{1^{st}-factor 2^{nd}-factor}$ 2^{nd} -Step: Check the sign of c: $Product$ is equal to c: That is, $c = r \times n$. $Product$ is equal to c. That is, $c = r \times n$. Sum is equal to b. That is, $b = r + n$. $If the sign of b is \oplus ve, then write (x + r)(x + n).$ $If sign of b is -ve, then write (x - r)(x - n).$ $Product$ is equal to c. That is, $c = r \times n$. $Product = Sum$ is equal to c. That is, $c = r \times n$. If the sign of c is -ve, then: $Product = Sum = Sum$	$x^{2}-5x+6$ 1) (x)(x) 2) c = +6is \oplus ve but, 6 = $\begin{cases} 6 \times 1 \\ 3 \times 2 \end{cases}$ so, use 3 + 2 = 5 3) (x 3)(x 2) but, we need - 5 so, -3 + (-2) = -5 Thus, (x-3)(x-2)
E. Perfect	<i>3rd-step:</i> Insert numbers and signs in factors. $(x \ r)(x \ n)$ <i>squaring technique</i> :	

E. Perfect squaring technique:

It is used only in case if the expression is of the form: $ax^2 + bx + c$.

Mathematics – E.S-8. Factorizing Techniques.