Objectives of session 1 :
Introduction and definition of a set.

Notations.

Writing of a set.

Representation of sets.
Types of sets.

Introductive - activity:
Q. What do you see in front of you?

A. A collection (group, set) of natural numbers.
Q. Circle the set of multiples of:
a) 3 .
b) 4 .
c) 5 .
d) 11 .

Introduction: - What is a set?

- Application.

A 'Set' is an unordered collection of zero or more distinct well defined objects.
Do the following statements form sets?

Examples of sets:
\checkmark Collection of English vowels
(A) a. e. i. o. U.
\checkmark Set of positive divisors of 3 (C) 1.3 .

Can't form a set:
\checkmark The list of difficult words in a text.
\checkmark The list of beautiful countries.

Note: We can form a set when it is possible to list all its members, or when we are able to recognize if an object belongs to it or not.

- What is an element?

Introduction: - How to name a set?

- How to name an element?

The objects that make up a set are called elements or members of the set.
e.g: Let A be the set of all quadrilaterals.

Squares and rectangles are elements of set A.
$>A$ set is usually denoted by a capital letter.
e.g:Sets: A, P, R... $^{\text {. }}$
-An element of a set is usually denoted by a small letter.
e.g:Elements: a,b,i,o,u...

S-1 "Rabih S Khater"

Writing of a Set

A set is often represented in the following two ways:
(I) Extension: Roster method (Tabular form)

In this method, a set is described by listing elements separated by commas, within braces $\}$.

For example, the set of even natural numbers can be described as:

$$
E=\{2,4,6,8, \ldots\} .
$$

Writing of a Set

(II) Comprehension: or Set Builder Method In this method, a set is described by a characterizing property $P(x)$ of its element x.
In such a case the set is described by:

$$
\begin{gathered}
\{x: P(x) \text { holds }\} \\
\text { or } \\
\{x \mid P(x) \text { holds }\}
\end{gathered}
$$

The symbol ' \mid ' or ':' is read as 'such that'.
In this representation the set of all even natural numbers can be written as:

$$
E=\{x \mid x=2 n, \forall n \in N\} .
$$

Representation of a set: - Def. of Venn Diagram

A set is represented by a closed domain in which elements are listed, such domain is called Euler-Venn diagram or simply Venn diagram.

Venn diagrams are used to teach elementary set theory, as well as illustrate simple set relationships.

Representation of a set: - Application.

Consider set $E=\{x \mid x$ is a letter of the English alphabets $\}$
Q. Write E in extension. A. $\mathrm{E}=\{a, b, c, d, \ldots, x, y, z\}$
Q. Represent E on a Venn diagram

Let $A=\{x \mid x$ is a vowel $\}$
Q. Write A in extension.

$$
\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{o}, \mathrm{i}, \mathrm{u}\}
$$

Q. Represent set A on a Venn diagram

Types of Sets:

Universal Set

Any set which is super set of all the sets under consideration is called the universal set and is denoted by $\mathrm{E}, \mathrm{S}, \Omega$ or U .

For example:
When we are using sets containing natural numbers then \mathbb{N} is the universal set.

When we are using letters then, the set of all alphabets is the universal set.

Types of Sets

Singleton set:

A set having a single element is called singleton set.
E.g: Consider the sample set $E=\{2,3,5\}$

Write E in comprehension.
$E=\{x \mid x$ is a prime $\& x<7\}$
Q. What can you say about sets

A, B \& C?
$A=\{2\}, B=\{3\}, C=\{5\}$ are
singleton sets.
S-1 "Rabih S Khater"

Types of Sets

Pair set:

A set having exactly two elements is called a pair set.
E.g: Consider the set: $E=\left\{x \mid(x-3)\left(x^{2}-4\right)=0\right\}$
Q. Write E in extension.
A. $E=\{-2,2,3\}$
Q. What can you say about set D ?

$\underset{s-1}{A} D=\{1,7\}$ is a pair set. 15

Types of Sets

Finite set: A set is called a finite set if it is either void set or its elements can be counted.

For example: $A=\{1,2,4,6\}$ is a finite set since it has a definite number of elements "four".

Infinite set: A set which is not a finite set, i.e. the counting up of whose elements is impossible, is called an infinite set.
For example:
(i) The set of points that belong to a straight line.
(ii) The set of all natural numbers.
(iii) The set of positive multiples of 3 .

S-1 "Rabih S Khater"
${ }^{16}$

