

Handouts-1. For Foundations of sets

- What is an element? Introduction: - How to name a set? - How to name an element?	
The objects that make up a set are called	Mathematics is the language of simplicity.
elements or members of the set.	Consider the set A = {a, e, i, o, u} then we
e.g: Let A be the set of all quadrilaterals. Squares and rectangles are elements of set A.	write 'a' is a member of the set 'A' as:
>A set is usually denoted by a capital letter.	→ $a \in A$ "we read a belongs to set A"
e.g :Sets : A,P, %	> We write 'b' is not a member of the set 'A' as:
>An element of a set is usually denoted by a small letter.	b ∉ A "we read a does not belong to set A"
e.g:Elements: a, b, 1, 0, u	

Types of Sets:	Types of Sets
Empty set:	Singleton set:
A set having no element is called an empty set. It is also known as null set or void set. It is denoted by ϕ .	A set having a single element is called singletor set. E.g: Consider the sample set E= {2,3,5}
For example:	Write E in comprehension. $E = \{x x \text{ is a prime } \& x < 7\}$
$A = \{x x \in R \& x^2 = -10\} = \phi$	Q. What can you say about sets A, B & C? $A=\{2\}, B=\{3\}, C=\{5\}$ are singleton sets.
S-1 13	S-1 "Rabih S Khater"

Types of Sets	Types of Sets
Pair set: A set having exactly two elements is pair set.	Finite set: A set is called a finite set if it is eithe void set or its elements can be counted. For example: A={1, 2, 4, 6} is a finite set since it bas a definite number of elements "four"
E.g: Consider the set: $E = \{x (x - 3)(x^2 - 0)\}$	4) = 0} Infinite set: A set which is not a finite set, i.e. the counting up of whose elements is impossible,
A. $E = \{-2,2,3\}$	-2. 3. E For example: (i) The set of points that belong to a straight line.
A. $D=\{1,7\}$ is a pair set.	(iii) The set of an inatural numbers.