Al Mahdi Schools Same:
 Mathematics $10^{\text {th-Grade }}$
 "Foundations of Sets"

$\mathrm{CH}-1$: Foundations of Sets
$10^{\text {th }}$ Grade

Objectives of session 2 :

-Subsets.

\checkmark Introduction \& Definition.
\checkmark Properties.
Equal sets.

- Complement of a set.

Operations on sets.

S-1
2

Subset: - Definition.
Subset: - Definition.
A Set is said to be a subset (part or contained) of another if all of its elements belong to another.
In other words: If for every $x \in A$, we get $x \in B$ then we say that A is Subset of B .
\checkmark In Symbols: $A \subset B$ means A is a subset of B.
\checkmark Properties:
\square Every set is a subset of itself: $A \subset A$
\square A void set is subset of every set: $\varphi \subset A$
If $A \subset B$ and $B \subset D$, then $A \subset D$

Introductive - activity:
Consider the following Venn-diagram:

1. List elements that belong to set:
1) $A=\{3,12,6,9\}$
2) $B=\{12,6\}$
2. Can we say that all elements of B belong to A ?
3. Is the converse true?

Equal sets:

Consider the following sets:

$$
A=\left\{x / x \in N \& x^{2}-4=0\right\}
$$

$$
B=\{x / x \in N \& x \text { is an even prime }\}
$$

1) Write the sets A \& B in extension.

$$
A=\{2\} \quad \& \quad B=\{2\}
$$

2) Is $A \subset B$? Justify. Yes, since $\forall x \in A, x \in B$ as well
3) Is $B \subset A$? Justify. Yes, since $\forall x \in B, x \in A$ as well

Conclusion: Two sets are equal if and only if (iff): $A \subset B \quad$ and $B \subset A$

Complement of a set: - In words
Applications.
Let E be the reference, such that $A \subset E$.
The complement of the set A in E is the set of all elements that are in \boldsymbol{E} but not in \boldsymbol{A}.

The complement of a set is denoted by: $\left[\begin{array}{l}A \\ E\end{array}\right.$ or \bar{A} Eg: Find the complement of:
$A=\{x \mid x$ plays football in your class $\}$
$B=\{x \mid x$ is strictly taller than 175 cm$\}$
$\bar{A}=\{x \mid x$ does'nt play football in your class $\}$

S-1
$\bar{B}=\{x \mid x$ is shorter than or equal to 175 cm$\}$

Take a set E , so that $A \subset E$.
Which part of E represents \bar{A}

In comprehension: $\bar{A}=\{x \mid x \notin A\}$
Properties: If $A \& B$ are any two subsets of E then

$$
\begin{array}{cc}
-\bar{E}=\varphi \quad-\bar{\varphi}=E \quad-\bar{E}=E \\
& A \subset B \text { iff } \bar{B} \subset \bar{A}
\end{array}
$$

S-1

Complement of a set: - In comprehension.

- Properties.

Union

Elements in at least one of the two sets:
$A \cup B=\{x \mid x \in A$ or $x \in B\}$

Intersection

Elements in exactly one of the two sets:
$A \cap B=\{x \mid x \in A$ and $x \in B\}$

Disjoint Sets

Def: If A and B have no common elements, they are said to be disjoint.

i.e. $A \cap B=\varnothing$

Set Identities via Venn

It's often simpler to understand an identity by drawing a Venn Diagram. For example De Morgan's first law

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

can be visualized as follows.

Handouts-2. For Foundations of sets

