The Islamic Institution For Education & Teaching Al-Mahdi Schools			IN HIS NAME	Mathematics Department School year: 2019-2020	
Hadath				Name:	
Gr	ade: 11Sc.	Section: A	W. S-2	Subject: Trigonometry	
I-	Take that: $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.				
	a. Calculate the exact value of: $\cos^2 \frac{\pi}{2}$.				
	b. Deduce the exact values of: $os \frac{\pi}{2} & sin \frac{\pi}{2}$.				
II-	The parts of this question are independent.				
	1) x & y are two acute angles such that : $tanx = \frac{1}{2}$ & $tany = \frac{1}{3}$. Calculate $tan(x + y)$				
	and deduce the value of $(x + y)$.				
	2) Show that $\frac{\left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right)^2}{\cos^2\frac{\pi}{8} - \sin^2\frac{\pi}{8}} = \sqrt{2} + 1$				
	3) Show that : $\frac{\sin 4x}{4 \sin x} = \cos x \cdot \cos 2x$				
	4) Calculate, without using the calculator, $\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right)$.				
III-	<i>II</i> - Solve the following equations in \mathbb{R} .				
	a. $\sin\left(x + \frac{\pi}{4}\right) = \cos x$ b. $ \tan(2x) = 1$				
<i>IV</i> - Given that $E = \sin x + 2\sin 2x + \sin 3x$ so that, $x \in [0, \pi[$					
	a. Prove that $E = 4\sin 2x \cdot \cos \frac{x}{2}$				
	b. Solve the equation: $E = 0$.				
<i>V</i> -	Given two arcs $\mathbf{a} \in \left[0; \frac{\pi}{4}\right]$ and $\mathbf{b} \in \left[0; \frac{\pi}{2}\right]$ such that $\sin a = \frac{\sqrt{5}}{5}$ and $\cos b = \frac{4}{5}$				
<u>Part-A</u> :					
	1) Verify that $\sin b = \frac{3}{5}$ and $\cos a = \frac{2\sqrt{5}}{5}$				
	2) Calculate <i>sin2a</i> & <i>cos2a</i> .				
3) Calculate $cos(2a + b)$ then deduce the value of $(2a + b)$.					
1) Prove that: $1 - \cos 2a$ $\tan^2 a$ for all $a \neq \pi^2 + b = -$ then deduce the value of $\tan^2 \pi$					
	1) Frove that: $\frac{1}{1+\cos 2a} = \tan a$ for an $a \neq \frac{1}{2} + k\pi$, then deduce the value of $\tan \frac{1}{8}$.				
VI.	2) Solve the equation: $\sin^2 x + 3\cos^2 x + \sin x = 2$. VI- Consider the equation (F): $(\cos a)x^2 - (2\sin a)x + \cos a = 0$ where <i>a</i> is a real number				
a. Prove that : If (F) admits one double root in R, then $\cos 2a = 0$.					
b. Let S and P be the sum and the product of the roots x_1 and x_2 of (F), when they exist.					
c. Write $\tan 2a$ in terms of S and P.					
VII-	<i>III-</i> If <i>x</i> is any acute angle then,				
a Show that: $tan(\pi - r) = \frac{\cos x - \sin x}{\sin x}$					

a. Show that:
$$\tan(\frac{\pi}{4} - x) = \frac{\cos x - \sin x}{\cos x + \sin x}$$

b. Deduce that: $\frac{\cos 2x}{1 + \sin 2x} = \tan(\frac{\pi}{4} - x)$

11th-Grade. Scientific section