Lycée © Des Arts

Name: \qquad
\square

Class : Grade 8

Section: ... Date :
Midterm
Exam in: Math $^{\text {M }}$

$$
\begin{aligned}
& \text { إرشادات عامة: 1. أكتب بخط واضح ومقروء. } \\
& \text { 2. } 1 \text { ع عدد الأسئلة } 6 . \\
& \text { 3. 3. يكنك البدء في أي سؤال تريد. } \\
& \text { 4. } \\
& \text { 50. } 50 \text {. العا(مة القصوى }
\end{aligned}
$$

$1^{\text {st }}$ exercise: (4 pts)

Choose with justification the correct answer:

No.	Questions	Answers		
		a	b	c
1.	The area of triangle $A B C$ is	$2 \sqrt{3} \mathrm{~cm}^{2}$	$4 \sqrt{3} \mathrm{~cm}^{2}$	$12 \mathrm{~cm}^{2}$
2.	If $E=\frac{3^{13}-3^{12}}{2}$, then $\mathrm{E}=$	$\frac{3}{2}$	0	3^{12}
3.	If $R N S K$ is a parallelogram, then $x^{o}=$	60°	80°	120°
4.	If $4^{2} \times 2^{x+1} \times 2^{3}=8^{5}$, then $x=$	23	-1	7

$\mathbf{2}^{\text {nd }}$ exercise: (4pts)

Consider the following numbers:
$A=\frac{1}{5}-\left(\frac{2}{5}\right)^{2} ; B=(2-\sqrt{5})^{2}+2(8+\sqrt{20}) ; C=-\frac{1.25 \times 8 \times 10^{7} \times 10^{-4}}{4 \times 10^{2}}$.
By writing all the steps of calculations:

1) Write A in the form of an irreducible fraction then in scientific notation. (1pt)
2) a. Show that B is a natural number. (1 pt)
b. Show that C is an integer. $(1 \mathrm{pt})$
3) Show that among A, B, and C, there are two opposite numbers and two reciprocal numbers. Justify.(1pt)

$3^{\text {rd }}$ exercise: (3pts)

Given the following numbers:

$$
X=2 \sqrt{75}+3 \sqrt{48}+2 \sqrt{27}-2 \sqrt{363} \quad \& \quad Y=(2+3 \sqrt{2})^{2}+(2 \sqrt{2}-3)(2 \sqrt{2}+3)
$$

1) Write X in the form $a \sqrt{3}$ and Y in the form $b+c \sqrt{2}$ where a, b, and c are integers to be determined. (2pts)
2) Rationalize the denominator of $\frac{A}{B} \cdot(1 \mathrm{pt})$

$4^{\text {th }}$ exercise: (6pts)

Consider the following polynomial:

$$
N(x)=4 x^{2}-(2 x-3)^{2}-2(x-1)(3-2 x)-9
$$

1) $\operatorname{Develop} \mathrm{N}(\mathrm{x}) .(3 / 4 \mathrm{pt})$
2) Prove that $N(x)$ can be written in the form $N(x)=2(2 x-3)(x+2)$ in two different ways.($11 / 2 \mathrm{pts}$)
3) Calculate the numerical value of $N(-2)$.What can you say about $x=-2$? Justify. ($1 / 2 \mathrm{pts}$)
4) Let $R(x)=(2 m+1) x^{2}-3 m x-4$.
a. Find the value of m, if -1 is a root of $R(x) \cdot(1 / 2 \mathrm{pt})$
b. Write the expression $R(x)$ as a product of two factors, in case $m=0$, then solve the following equations:
i) $\mathrm{R}(\mathrm{x})=-2$
ii) $R(x)=(2 x+4)$
($1 / 4.1 / 2,3 / 4 \mathrm{pts}$)
5) a. If $K(x)=\frac{R(x)}{N(x)}$, then find the values of x for which $K(x)$ is defined. $(1 / 2 \mathrm{pt})$
b. Solve the equation $K(x)=\frac{3}{2} \cdot(3 / 4 \mathrm{pt})$

$5^{\text {th }}$ exercise: (5pts)

Consider a parallelogram $A B C D$ such that $A C=A B$ and let M be the midpoint of [$B C]$.

1) Draw a figure. $(1 / 2 \mathrm{pt})$
2) Show that $(A M) \perp(B C)$. $(1 / 2 \mathrm{pt})$
3) Plot E, the symmetric of A with respect to M. What is the nature of quadrilateral $A B E C$? (1pt)
4) Show that the points D, C and E are collinear and that C is the midpoint of $[D E]$. (2pts)
5) Show that triangle DAE is right at A. (1pt)

$6^{\text {th }}$ exercise: (8pts)

Consider an isosceles triangle AMT at vertex M. H is the fourth vertex of the parallelogram MATH.
Let [My) be the bisector of $A \hat{M} T$ that cuts [AT] at $\mathrm{O}, \&$ let R be the symmetric of M with respect to O .

1. Reproduce the figure and complete it. ($11 / 2 \mathrm{pts}$)
2. a. What does the straight-line (MO) represent for [AT]? Justify. (1pt)
b. Determine the nature of quadrilateral MART. ($1^{1 / 2} \mathrm{pts}$)
c. Show that MH $=2 \mathrm{TO}$. (1 pt)
3. Let I be the midpoint of $[\mathrm{MH}]$. Show that TOMI is a rectangle. ($1 \frac{1}{2} \mathrm{pts}$)

4. How should the nature triangle AMT be changed so that MART becomes a square? Explain your answer. ($1 \frac{1}{2}$ pts)
