Name:
Class : Grade 8 Section \qquad

Exam in: $\mathcal{M a t h}$

Mid-Term

$$
\begin{aligned}
& \text { إرشادات: 1. أكتب بخط واضح ومقروء. } \\
& \text { 2. عدد الأسئلة اربعة } \\
& \text { 3. يـ يكنك البدء في أي سؤال تريد. } \\
& \text { 4. العلامة ا لقصوى } 25
\end{aligned}
$$

I. (4pts)

Decide if each statement is true or false and justify.

1) Given: $E=\frac{(-7)^{3} \times(-5)^{-4}}{49 \times 5^{-6} \times(-7)}$, then E is the square of $5 .(3 / 4 \mathrm{pt})$
2) Let $\mathrm{f}(x)=\frac{-x+1}{x+2}$, then f is defined for any natural integer. ($3 / 4 \mathrm{pt}$)
3) Given $f(x)=x^{2}-2 x-2$, then $f(1-\sqrt{3})=2 \sqrt{3}-6 .(1 p t)$
4) If $A B C$ is a triangle such that D, E, and F are the respective midpoints of $[A B]$, [AC], and [BC], then DEFB is a parallelogram. ($3 / 4 \mathrm{pt}$)
5) Given $A B=\sqrt{75}, A C=3 \sqrt{27}$, and $B C=2 \sqrt{12}$, then the points A, B, and C are collinear in this order. $(3 / 4 \mathrm{pt})$
II. (4pts)

Given the real numbers:

$$
\begin{array}{lll}
A=\frac{8}{3}+5 \div\left(1-\frac{2}{5}\right) & ; & B=\frac{55 \times 10^{3} \times 2^{10}}{10^{4} \times 2^{9}} \\
C=(3 \sqrt{5}-1)(\sqrt{5}+1)-(\sqrt{5}+1)^{2} & ; & D=36 \times 10^{-6} \times\left(2 \times 10^{-1}\right)^{-2}
\end{array}
$$

1) Write A and B in the form of an irreducible fraction, then deduce that $\mathrm{A}=\mathrm{B} .\left(1 \frac{1}{1} 2 \mathrm{pts}\right)$
2) Simplify C and state the type of the obtained number with justification. ($11 / 4 \mathrm{pts}$)
3) Write D in the form of a decimal number then in the scientific notation.($11 / 4 \mathrm{pts}$)

III.(9pts)

In this exercise the two parts A and B are independent.

Part A:

Consider the two polynomials.
$P(x)=(5 x-4)^{2}-(1-3 x)^{2}$
$Q(x)=4 x^{2}-12 x+9+3(2 x-3)(2-x)-4 x+6$

1) a) Write $P(x)$ in the form $a x^{2}+b x+c$ where a, b, and c are integers to be determined. (1pt)
b) Solve the equation $\mathrm{P}(\mathrm{x})=14 \mathrm{x}^{2}-34 \mathrm{x}+23(1 \mathrm{pt})$
2) a) Show that $4 x^{2}-12 x+9$ is a perfect square then prove that:

$$
\mathrm{Q}(\mathrm{x})=(2 \mathrm{x}-3)(-\mathrm{x}+1) \cdot(1 \mathrm{pt})
$$

b) Show that $x=\frac{3}{2}$ is a common root for $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x}):\left(1 \frac{1}{2} \mathrm{pts}\right)$
3) Let $\mathrm{T}(\mathrm{x})=\frac{P(x)}{Q(x)}$
a) Use a suitable remarkable identity to factorize $\mathrm{P}(\mathrm{x})$. (1pt)
b) Precise the values of x for which $T(x)$ is defined, then simplify $T(x) .(1 p t)$

Part B:

Consider the right trapezoid ABCD such that: $\mathrm{AD}=\mathrm{x}+3, \mathrm{DC}=3 \mathrm{x}-1$, and $A B=x+9$ (see figure to the right).
The unit of length is cm and $\mathrm{x}>1$.

1) Verify that the area of the trapezoid $A B C D$ is $A=2 x^{2}+10 x+12$. (1pt)
2) Determine the value of x so that the rectangle AHCD becomes a square. $(3 / 4 \mathrm{pt})$
3) In case $x=2$, calculate the area of the trapezoid ABCD. ($3 / 4 \mathrm{pt}$)

IV. (8pts)

Consider the following information:

- ABC is a triangle such that $\mathrm{BC}=5 \mathrm{~cm}, A \hat{B C}=60^{\circ}$, and $\hat{A C B}=30^{\circ}$.
- Point S is the symmetric of A with respect to (BC).
- [AS] and [BC] intersect at O.
- The perpendicular drawn from S to $[\mathrm{AC}]$ cuts $[\mathrm{BC}]$ at T.

1) Draw a figure. (1pt)
2) Calculate $\hat{B A C}$ and deduce that (AB) and (ST) are parallel. (1pt)
3) a) Show that the two triangles ABO and OTS are congruent then deduce that O is the midpoint of $[\mathrm{BT}] .\left(1^{11 / 2} \mathrm{pts}\right)$
b) Show that the quadrilateral ABST is a rhombus. ($3 / 4 \mathrm{pt}$)
4) a) Show that: $\operatorname{SAC}=60^{\circ} .(3 / 4 \mathrm{pt})$
b) What does straight-line (CO) represent for [AS]. ($3 / 4 \mathrm{pt}$)
c) Deduce that triangle ACS is equilateral. ($3 / 4 \mathrm{pt}$)
5) Let M be the symmetric of S with respect to C and D be the symmetric of A with respect to C .
a) Draw M and D. ($1 / 2 \mathrm{pt}$)
b) Precise the nature of the quadrilateral ASDM. (1pt)

Good Work

