Lycée Des Arts

№m/ Name: \qquad
\square
Classe/Class: Grade 8
Section: \qquad

Examen de/Exam in: Math

$1^{\text {st }}$ exercise: ($61 / 2 \mathrm{pts}$)

In the figure below, $A B C D$ is a quadrilateral with perpendicular diagonals that intersect at O, such that
$A C=6 \mathrm{~cm}, A O=\frac{2^{11}+4^{5}}{2^{11}-4^{5}}, D O=\frac{\frac{2}{10}+\frac{2}{5}}{\frac{2}{3} \times \frac{9}{10}-\frac{2}{5}}$ and $B D=\frac{0.24 \times 9}{5^{-2} \times 36 \times 2^{-2}}$.

1) a) Prove that $A O$ is a natural number to be determined. ($3 / 4 \mathrm{pt}$)
b) Verify that: $O D=\frac{B D}{2}$? ($\left.1^{1 / 2} \mathrm{pts}\right)$
c) Deduce the relative position of O with respect to $A B C D .(3 / 4 \mathrm{pt})$
d) Show that the quadrilateral $A B C D$ is a square. $(3 / 4 \mathrm{pt})$

2) The parallel to $(A B)$ through O cuts $[A D]$ at F.
a) Reproduce and complete the figure. ($1 / 4 \mathrm{pt}$)
b) Show that $O F=\frac{A D}{2}(1 \mathrm{pt})$
c) Prove that the area of triangle $A O D$ is $4.5 \mathrm{~cm}^{2}$. Deduce the area of $A B C D .\left(1 \frac{1}{2} \mathrm{pts}\right)$

$\underline{2}^{\text {nd }}$ exercise: ($61 / 4 \mathrm{pts}$)

$\underline{\text { Part } A}$: Consider the numbers: $n=\frac{\sqrt{18} \times \sqrt{20}}{\sqrt{45} \times \sqrt{2}}$ and $u=\sqrt{3 x-8}$

1) a) Prove that $n=2 .(3 / 4 \mathrm{pt})$
b) Can you calculate u for $x=n$? Justify your answer. ($1 / 2 \mathrm{pt}$)
c) Determine the values of x so that u exists. $(3 / 4 \mathrm{pt})$
2) Calculate x for $u=n .(3 / 4 \mathrm{pt})$

Part B: Let $m=2 \sqrt{75}-3 \sqrt{48}+2 \sqrt{12}+\sqrt{1}$

1) a) Write m in the form $a+b \sqrt{3}$ where $a \& b$ are natural integers to be determined. ($3 / 4 \mathrm{pt}$)
b) Use the calculator to find an approximate value of m to the nearest 0.001 by excess. ($1 / 2 \mathrm{pt}$)
2) a) Calculate m^{2} then develop: $(\sqrt{3}+2)^{2} \cdot(3 / 4 \mathrm{pt})$
b) If $t=m^{2}-(\sqrt{3}+2)^{2}+3$, prove that $t=9$. $(3 / 4 \mathrm{pt})$
c) Calculate the measure of the side of a square $A B C D$ knowing that its area equals $t .(3 / 4 \mathrm{pt})$

$3^{\text {rd }}$ exercise: ($61 / 2 \mathrm{pts}$)

Consider the following algebraic expressions:
$P(x)=(3 x-5)^{2}+(1+x)(5-3 x)$ and $\quad Q(x)=\left(x^{2}-9\right)-(3 x-9)(x-5)$

1) a) Show that $P(x)=2(3 x-5)(x-3) .(3 / 4 \mathrm{pt})$
b) Solve in the set of natural numbers the equation: $P(x)=0 .(3 / 4 \mathrm{pt})$
2) a) Factorize $Q(x) .(3 / 4 \mathrm{pt})$
b) Write $Q(x)$ in the form $a x^{2}+b x+c$ where $a, b \& c$ are integers to be determined. $(3 / 4 \mathrm{pt})$
c) Solve $Q(x)=-54 .(3 / 4 \mathrm{pt})$
d) Is $x=9$ a root of $Q(x)$? Justify. ($1 / 2 \mathrm{pt}$)
3) Let $F(x)=\frac{P(x)}{Q(x)}$
a) For what values of x does $Q(x)$ vanish? Deduce the domain of definition of F. (1 pt)
b) Simplify $F(x) .(1 / 2 \mathrm{pt})$
c) Calculate $F(\sqrt{2})$ and give the answer in simplest form. $(3 / 4 \mathrm{pt})$

$4^{\text {th }}$ exercise: ($53 / 4 \mathrm{pts}$)

The adjacent figure is a triangle right BSC at S, and [SH] is the height relative to the hypotenuse [BC].
P is a point on $[S H]$, such that $H B=H P$.
(Draw an enlarged figure at the center of the answer sheet) $(1 / 4 \mathrm{pt})$

1) Draw the parallel through P to $(S C)$ that cuts $[B C] \&$ [$B S$] at $E \& F$ respectively.
a) Prove that the triangle $B E F$ is right at F. $(1 / 2 \mathrm{pt})$

b) Verify that: $S \hat{B} C=E \hat{P} H$. $(3 / 4 \mathrm{pt})$
c) Deduce that triangles $B H S \& H E P$ are congruent. (Write the homologous elements) ($3 / 4 \mathrm{pt}$)
d) What is the nature of triangle HSE? ($1 / 2 \mathrm{pt}$)
2) Let I be the point of intersection of the straight lines $(B P)$ and $(S E)$, and K be the orthogonal projection of E on $[S C]$.
a) Prove that ($B I$) is perpendicular to $(S E) .(3 / 4 \mathrm{pt})$
b) Determine the nature of quadrilateral SFEK . Justify. ($3 / 4 \mathrm{pt}$)
3) Designate by T the intersection point of : the parallel through E to $(S H)$, and the parallel through S to $(H C)$.
a) Prove that $H E T S$ is a square. $(3 / 4 \mathrm{pt})$
b) Deduce that HETS \& SFEK have the same center of symmetry. ($3 / 4 \mathrm{pt}$)
