Lycée Des Arts

Name / Nom : \qquad
\square
Class / Classe : Grade 8 Section: Date

Exam in / Examen de: Math

Exercise 1:(11 pts)

In the following table, only one of the proposed answers is correct. Indicate it and justify your choice.

№	Questions	Answers		
		A	B	C
1	In the following figure we have : $A B C D$ is a square of side 6 cm . M and N are two points on $[A B]$ and $[A D]$ respectively such that: $M B=D N=4 \mathrm{~cm}$ The area of the shaded part represents the..................(2½ pts)	$\frac{1}{3}$ of the area of the square	$\frac{1}{4}$ of the area of the square	$\frac{1}{5}$ of the area of the square
2	If $\boldsymbol{A}=\left(\frac{4}{3}\right)^{-1}-\frac{3+\frac{5}{4}}{5-\frac{1}{7}}$ and $\boldsymbol{B}=\frac{96 \times 10^{-6} \times(-5) \times 10^{-1}}{2^{-6} \times 3 \times 5^{-6} \times 2}$ Then A is(2 pts)	The reciprocal of B	The opposite of B	Equal to B

3	In the following figure we have : - $A B C$ is a triangle and O belongs to $[A C]$. - I is the midpoint of $[A B]$. - $I O=I A=I B$. - Jis the midpoint of $[B C]$. Then the triangle OJC is......... (2 pts)	Isosceles at J	Equilateral	Rectangle at J.
4	Given $F=\frac{3 x-5}{5 x-2}+\frac{16-9 x}{4-10 x}$. Then F is: \qquad .(11/4 pts)	A literal fraction for $x \neq \frac{2}{5}$	A decimal fraction	Not Decimal
5	The approximate value of : $A=\frac{2+\frac{1}{3}+\frac{1}{1+\frac{1}{3}}}{1-\frac{1}{2}}$ to the nearest hundredths by excess is(11/4 pts)	6,2	6,16	6,17
6	(S) is a circle of center O and diameter $[A B] . C$ is a point of (S) and D is the symmetric of B with respect to C. The lines $(A C)$ and $(D O)$ intersect at E. The line ($B E$) in the triangle $A B D$ is ...(2 pts)	A median	An angle bisector	A height

Exercise 2: ($101 / 2 \mathrm{pts}$)

Given the following algebraic expressions:
$G(x)=4(x-1)^{2}-(3 x+2)^{2}$ and $H(x)=(x+4)^{2}-(x+3) \cdot(x+4)+2 x^{2}-32$

1) a) Expand and reduce $H(\boldsymbol{x})$. (1pt)
b) Solve $H(\boldsymbol{x})=-28 .(1 \mathrm{pt})$
2) a) Show, by factorizing, that: $G(x)=-5 x \cdot(x+4)$ and $H(x)=(x+4) \cdot(2 \boldsymbol{x}-7) \cdot(2 \mathrm{pts})$
b) Deduce the roots of $G(x)$. $(1 \mathrm{pt})$
3) Let $S A L I$ be a parallelogram such that $S A=G(\boldsymbol{x})$ and $A L=H(\boldsymbol{x})$.
a) Does the side $[S A]$ exist for $\boldsymbol{x}=-4$? Justify. $(3 / 4 \mathrm{pt})$
b) Calculate the numerical value of $A L$ for $\boldsymbol{x}=1$. What do you notice? $(3 / 4 \mathrm{pt})$
c) Is there any value of \boldsymbol{x} for which $S A L I$ is a rhombus? Justify. ($1 \frac{1}{4} \mathrm{pts}$)
4) We consider the fractional expression $R(\boldsymbol{x})$ defined by: $R(\boldsymbol{x})=\frac{\boldsymbol{G}(\boldsymbol{x})}{\boldsymbol{H}(\boldsymbol{x})}$.
a) Determine the domain of definition of $R(\boldsymbol{x})$, then simplify it.($11 / 4 \mathrm{pts}$)
b) Calculate $R\left(-\frac{1}{2}\right) .(1 / 2 \mathrm{pt})$
c) Is there any value of \boldsymbol{x} such that $R(\boldsymbol{x})=-\frac{5}{2}$? Justify. (1pt)

Exercise 3: ($81 / 2 \mathrm{pts}$)

Let $A B C$ be a right triangle at A such that $B C=6 \mathrm{~cm}$ and $\boldsymbol{A B C}=30^{\circ} .[A H)$ is the height relative to $[B C] . A^{\prime}$ is the symmetric of A with respect to H, and M is the midpoint of $[B C]$.

1) Draw a clean figure. ($1 / 2 \mathrm{pt}$)
2) Prove that the triangles $A C H$ and $A^{\prime} C H$ are congruent, then deduce the measure of angle $\widehat{A^{\prime} C B} \cdot\left(1^{1 / 2} \mathrm{pts}\right)$
3) a) Calculate $A M$, then deduce that $A C M$ is an equilateral triangle.(1pt)
b) Show that $C A M A^{\prime}$ is a rhombus.(1pt)
4) Show that the triangles $A C B$ and $A^{\prime} C B$ are congruent then deduce that $[B C)$ is the angular bisector of $\widehat{A B A^{\prime}} \cdot\left(1^{1} / 2 \mathrm{pts}\right)$
5) Draw: $(1 / 2 \mathrm{pt})$
${ }^{*} H^{\prime}$ the symmetric of H with respect to A.
${ }^{*} C^{\prime}$ the symmetric of C with respect to A.
${ }^{*} M^{\prime}$ the symmetric of M with respect to A.
a) Determine the nature of the quadrilateral $C H C^{\prime} H^{\prime} .(3 / 4 \mathrm{pt})$
b) Prove that $C^{\prime} H^{\prime}=1.5 \mathrm{~cm} .(1 / 2 \mathrm{pt})$
c) Prove that $C C^{\prime}=M M^{\prime}$, then deduce that the quadrilateral $C M C^{\prime} M^{\prime}$ is a rectangle.($1 \frac{1}{4} \mathrm{pts}$)
