Lycée Des Arts					
Name / Nom :					
<u>Class / Classe</u> : Grade 8	<u>Section</u> :	<u>Date</u>		•••••	
Exam in / Examen d	e: Math			Midterm	
يمنع استعمال الآلة الحاسبة					

Exercise 1:(11 pts)

In the following table, *only one* of the proposed answers is correct. Indicate it and *justify* your choice.

№	Questions	Answers			
	Questions	A	В	С	
1	In the following figure we have : $A \qquad 4cm \qquad B$ $A \qquad 6cm \qquad C$ $ABCD \text{ is a square of side 6cm.}$ $M \text{ and } N \text{ are two points on } [AB] \text{ and } [AD] \text{ respectively such that:}$ $MB = DN = 4\text{ cm.}$ The area of the shaded part represents the(2 ¹ /2 pts)	$\frac{1}{3}$ of the area of the square	$\frac{1}{4}$ of the area of the square	$\frac{1}{5}$ of the area of the square	
2	If $A = \left(\frac{4}{3}\right)^{-1} - \frac{3 + \frac{5}{4}}{5 - \frac{1}{7}}$ and $B = \frac{96 \times 10^{-6} \times (-5) \times 10^{-1}}{2^{-6} \times 3 \times 5^{-6} \times 2}$ Then A is(2 pts)	The reciprocal of B	The opposite of B	Equal to B	

	In the following figure we have :			
3	A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Isosceles at J	Equilateral	Rectangle at J.
4	Given $F = \frac{3x-5}{5x-2} + \frac{16-9x}{4-10x}$. Then <i>F</i> is:(1 ¹ / ₄ pts)	A literal fraction for $x \neq \frac{2}{5}$	A decimal fraction	Not Decimal
5	The approximate value of : $A = \frac{2 + \frac{1}{3} + \frac{1}{1 + \frac{1}{3}}}{1 - \frac{1}{2}}$ to the nearest hundredths by excess is(1 ¹ / ₄ pts)	6,2	6,16	6,17
6	(S) is a circle of center <i>O</i> and diameter [<i>AB</i>]. <i>C</i> is a point of (<i>S</i>) and <i>D</i> is the symmetric of <i>B</i> with respect to <i>C</i> . The lines (<i>AC</i>) and (<i>DO</i>) intersect at <i>E</i> . The line (<i>BE</i>) in the triangle <i>ABD</i> is(2 pts)	A median	An angle bisector	A height

Exercise 2: (10¹/₂ pts)

Given the following algebraic expressions:

 $G(\mathbf{x}) = 4(\mathbf{x}-1)^2 - (3\mathbf{x}+2)^2$ and $H(\mathbf{x}) = (\mathbf{x}+4)^2 - (\mathbf{x}+3) \cdot (\mathbf{x}+4) + 2\mathbf{x}^2 - 32$

- 1) a) Expand and reduce $H(\mathbf{x})$. (1pt)
 - b) Solve *H*(**x**) = 28. (1pt)
- 2) a) Show, by factorizing, that: $G(\mathbf{x}) = -5\mathbf{x} \cdot (\mathbf{x} + 4)$ and $H(\mathbf{x}) = (\mathbf{x} + 4) \cdot (2\mathbf{x} 7) \cdot (2 \text{ pts})$
 - b) Deduce the roots of $G(\mathbf{x})$. (1 pt)
- 3) Let *SALI* be a parallelogram such that $SA = G(\mathbf{x})$ and $AL = H(\mathbf{x})$.
 - a) Does the side [*SA*] exist for x = -4? **Justify.** (³/₄ pt)
 - b) Calculate the numerical value of *AL* for x = 1. What do you notice? (³/₄ pt)
 - c) Is there any value of \boldsymbol{x} for which *SALI* is a rhombus? Justify. (1¹/₄ pts)
- 4) We consider the fractional expression $R(\mathbf{x})$ defined by: $R(\mathbf{x}) = \frac{G(\mathbf{x})}{H(\mathbf{x})}$.
 - a) Determine the domain of definition of $R(\mathbf{x})$, then simplify it.(1¹/₄ pts)
 - b) Calculate $R(-\frac{1}{2})$. (½ pt)

c) Is there any value of \boldsymbol{x} such that $R(\boldsymbol{x}) = -\frac{5}{2}$? Justify. (1pt)

<u>Exercise 3: (8½ pts)</u>

Let ABC be a right triangle at A such that BC = 6cm and $A\hat{B}C = 30^{\circ}$. [AH] is the height relative to [BC]. A' is the symmetric of A with respect to H, and M is the midpoint of [BC].

- 1) Draw a clean figure. (½ pt)
- 2) Prove that the triangles *ACH* and *A'CH* are congruent, then deduce the measure of $angle \widehat{A'CB}$.(1½pts)
- 3) a) Calculate *AM*, then deduce that *ACM* is an equilateral triangle.(1pt)
 - b) Show that *CAMA*' is a rhombus.(1pt)
- 4) Show that the triangles *ACB* and *A'CB* are congruent then deduce that [*BC*) is the angular bisector of $\widehat{ABA'}$. (1½ pts)
- 5) Draw: (½ pt)
 - $^{*}H'$ the symmetric of H with respect to A.
 - $^{*}C'$ the symmetric of C with respect to A.
 - $^{*}M'$ the symmetric of M with respect to A.
 - a) Determine the nature of the quadrilateral *CHC'H'*. (¾ pt)
 - b) Prove that C'H' = 1.5 *cm*. (½ pt)
 - c) Prove that *CC*' = *MM*', then deduce that the quadrilateral *CMC'M*' is a rectangle.(1¼ pts)

Good work