Lycée Des Arts			
Name / Nom:			
<u>Class / Classe</u> : Gr8	<u>Section</u> : <u>Date</u> :	·····	
Exam in / Examen de: <i>Math</i>		Midterm	

يمنع استعمال الآلة الحاسبة

Exercise I : (14 pts)

In the table below, <u>One</u> of the proposed answers to each question is correct. Indicate it with justification.

N⁰	Questions	Answers		
		А	В	C
1.	The equation : $x(x - 5) = (x - 5)^2$ is verified for : (1 ¹ /2pts)	A unique value of x	All values of x	No values of x
2.	If $A = \frac{2\frac{3}{4} + \frac{1}{5}}{\frac{3}{4} - \frac{1}{2} + \frac{7}{5}}$ and $B = \frac{1}{7} + 2 \times \frac{2}{5} + \frac{26}{35}$ then (3pts)	A < B	A > B	A = B
3.	In the adjacent figure we have : - $A\widehat{B}D = 35^{\circ}$ C - D is the center of the inscribed circle about the triangle ABC . So $A\widehat{C}B=$ (2½2pts)	40°	110°	55°
4.	<i>ABC</i> is a triangle such that : $BC = \frac{75^2 + 125^2}{85 \times 25} cm$ N is the midpoint of [AB]. The parallel (d) to [BC] passing through <i>N</i> cuts [<i>AC</i>] at <i>D</i> . so <i>ND</i> =	10 cm	5 cm	3.5 cm

5.	-ABR is a triangle right at A. - T is a point on A the semi- straight line [BR) (not on the segment [BR]). - (d) is the perpendicular to (BR) through T. (BA) and B (AR) cut (d) at S and K respectively. So the straight lines (SR) and (BK) are (2pts)	Intersecting	Parallel	Perpendicular
6.	If $\boldsymbol{A} = \left(\frac{-2}{3}\right)^{-2} - \frac{1 - \frac{1}{2^2}}{2 + \frac{1}{2^2}}$ and $\boldsymbol{B} = \frac{0.24 \times 1.8^2}{0.48 \times 0.36}$ So the scientific notation of $\frac{A}{B} \times 54$ is (2½pts)	2.3×10^{-1}	2.3×10	0.23×10^{2}

Exercise II : (13 pts)

Consider the expression: $P(x) = x^2 - m + 3(x - 1)(x - 2)$

- 1- What does P(x) represent and for what values of x is it defined? Justify. (1- pt)
- 2- Determine the values of *m* for which x = 2 is a root of P(x). (1- pt)
- 3- From this part on, let m = 4
 - a. Prove that P(x) can be written in the form $ax^2 + bx + c$, where a, b & c are integers to be determined. (1- pt)
 - b. Solve: $P(x) = 2.(^{3}4\text{pt})$
 - c. Express P(x) in form of product of 1st degree binomials. (1- pt)

4- Let
$$Q(x) = (3x+5)^2 - (x-6)^2$$

- a. Prove that Q(x) = (2x+11)(4x-1). (1- pt)
- b. Deduce the roots of Q(x). (¾pt)

5- Let
$$F(x) = \frac{P(x)}{Q(x)}$$

- a. What does F(x) represent? Justify. (½pt)
- b. Prove that F(x) is defined for all natural numbers x (1 pt)

c. Simplify (F). (¹/₂pt) d. Show that $F(x) = 1 - \frac{x+13}{2x+11}$.(1pt)

> e. Show that $F\left(\frac{1}{2}\right)$ is the inverse of a number to be determined. (1pt) f. Solve $F(x) = \frac{1}{4}$. (1pt)

6- Let ABCD & EFGH be two rectangles of respective areas Q(x) & P(x).

- a. Determine the area of the shaded part in product form . (¾pts)
- b. Calculate its numerical value if x = 0. What can you deduce? (³/₄pt)

Exercice III : (13 pts)

Let (C) be a circle of center O, radius 4 cm and diameter [AB]. The perpendicular bisector of [OA] cuts (C)at M and N and cuts (AB)at E.

- 1) Draw a clear figure. (½pts)
- 2) i) Show that **OA=AM**. $(\frac{3}{4}pt)$

ii) Deduce the nature of triangle AMO. (¾pt)

3) i- Find a relation between the segments **MO** and **AB**. (½pt)

ii- Deduce that the triangle MAB is a semi-equilateral triangle. (³/₄pt)

- 4) Determine the nature of quadrilateral AMON. . (¾pt)
- 5) Let I be the midpoint of [**BM**]
 - a- Show that (OI) is parallel to (MA) . (¾pt)
 - b- Deduce the exact measure of the segment OI. (¾pt)
- 6) Show that the points $N,\,O$ and I are collinear. . $({}^3\!\!\!/ 4pt)$
- 7) a Show that the two triangles **OIB** and **MEO** are congruent. (1½ pt) b- Deduce that **BI=EN** (½ pt)
- 8) What does the point **O** represent for triangle **MBN**? (1 pt)
- 9) Deduce that (MO) cuts (NB) at its midpoint. (¾ pt)
- 10)Let K be the symmetric of **A** with respect to **N**, and **S** the orthogonal projection of **K** on (**AM**). (¹/₄ pt)
 - a. What is the nature of the quadrilateral *NOBK*? justify (1 pt)
 - b. Deduce that the quadrilateral *MBKS* is a rectangle. (1 pt)
 - c. Calculate the measure of [MB] so that the perimeter of *MBKS* is 15 *cm.* (¾ pt)

Good Work