Lycée Des Arts

Name / Nom:
Class / Classe: Gr8
Section:
Date:
Exam in / Examen de: $\boldsymbol{M a t h}$
Midterm

يمنع استعمال الآلة الحاسبة

Exercise I: (14 pts)

In the table below, One of the proposed answers to each question is correct. Indicate it with justification.

№	Questions	Answers		
		A	B	C
1.	The equation : $x(x-5)=(x-5)^{2}$ is verified for: ($11 / 2 \mathrm{pts}$)	A unique value of \boldsymbol{x}	All values of \boldsymbol{x}	No values of \boldsymbol{x}
2.	$\begin{aligned} & \text { If } A=\frac{2 \frac{3}{4}+\frac{1}{5}}{\frac{3}{4}-\frac{1}{2}+\frac{7}{5}} \\ & \text { and } B=\frac{1}{7}+2 \times \frac{2}{5}+\frac{26}{35} \\ & \text { then....... (3pts) } \end{aligned}$	A $<$ B	A $>$ B	$A=B$
3.	In the adjacent figure we have : $-\boldsymbol{A} \widehat{\boldsymbol{B}} \boldsymbol{D}=35^{\circ}$ - D is the center of the inscribed circle about the triangle $A B C$. So $A \widehat{C} B=$	40°	110°	55°
4.	$A B C$ is a triangle such that : $\boldsymbol{B C}=\frac{75^{2}+125^{2}}{85 \times 25} \mathrm{~cm}$ N is the midpoint of $[\mathrm{AB}]$. The parallel (d) to [BC] passing through N cuts $[A C]$ at D . so $N D=$ \qquad (21/2pts)	10 cm	5 cm	3.5 cm

5.	$-A B R$ is a triangle right at A. $-T$ is a point on the semistraight line [$B R$) (not on the segment [BR]). -(d) is the perpendicular to ($B R$) through T. $(B A)$ and B ($A R$) cut (d) at \boldsymbol{S} and \boldsymbol{K} respectively. So the straight lines ($S R$) and ($B K$) are...... (2pts)	Intersecting	Parallel	Perpendicular
6.	$\begin{aligned} & \text { If } \boldsymbol{A}=\left(\frac{-2}{3}\right)^{-2}-\frac{1-\frac{1}{2^{2}}}{2+\frac{1}{2^{2}}} \\ & \text { and } \boldsymbol{B}=\frac{0.24 \times 1.8^{2}}{0.48 \times 0.36} \end{aligned}$ So the scientific notation of $\frac{\boldsymbol{A}}{\boldsymbol{B}} \times 54$ is......... ($2^{1} / 2 p t s$)	2.3×10^{-1}	2.3×10	0.23×10^{2}

Exercise II : (13 pts)

Consider the expression: $\boldsymbol{P}(\boldsymbol{x})=x^{2}-\boldsymbol{m}+\mathbf{3}(\boldsymbol{x}-\mathbf{1})(\boldsymbol{x}-2)$
1- What does $\boldsymbol{P}(\boldsymbol{x})$ represent and for what values of x is it defined? Justify. (1- pt)
2- Determine the values of m for which $x=2$ is a root of $P(x)$. (1- pt)
3- From this part on, let $m=4$
a. Prove that $P(x)$ can be written in the form $a x^{2}+b x+c$, where $a, b \& c$ are integers to be determined. (1-pt)
b. Solve: $P(x)=2$. $(3 / 4 \mathrm{pt})$
c. Express $P(x)$ in form of product of $1^{\text {st }}$ degree binomials. (1- pt)

4- Let $Q(x)=(3 x+5)^{2}-(x-6)^{2}$
a. Prove that $Q(x)=(2 x+11)(4 x-1)$. $(1-\mathrm{pt})$
b. Deduce the roots of $Q(x)$. $(3 / 4 \mathrm{pt})$

5- Let $F(x)=\frac{P(x)}{Q(x)}$
a. What does $F(x)$ represent? Justify. $(1 / 2 p t)$
b. Prove that $F(x)$ is defined for all natural numbers $x(1 \mathrm{pt})$
c. Simplify (F). (1/2pt)
d. Show that $\boldsymbol{F}(\boldsymbol{x})=1-\frac{x+13}{2 x+11} .(1 \mathrm{pt})$
e. Show that $\boldsymbol{F}\left(\frac{1}{2}\right)$ is the inverse of a number to be determined. (1pt)
f. Solve $F(x)=\frac{1}{4} .(1 \mathrm{pt})$

6- Let $A B C D \& E F G H$ be two rectangles of respective areas $Q(x) \& P(x)$.
a. Determine the area of the shaded part in product form. ($3 / 4 \mathrm{pts}$)
b. Calculate its numerical value if $\boldsymbol{x}=0$. What can you deduce? $(3 / 4 \mathrm{pt})$

Exercice III : (13 pts)

Let (C) be a circle of center O , radius 4 cm and diameter [AB]. The perpendicular bisector of [OA] cuts (C)at M and N and cuts (AB)at E .

1) Draw a clear figure. ($1 / 2 \mathrm{pts}$)
2) i) Show that $\mathrm{OA}=\mathrm{AM}$. ($3 / 4 \mathrm{pt}$)
ii) Deduce the nature of triangle AMO. ($3 / 4 \mathrm{pt}$)
3) i- Find a relation between the segments $M O$ and $A B$. $(1 / 2 p t)$
ii- Deduce that the triangle MAB is a semi-equilateral triangle. ($3 / 4 \mathrm{pt}$)
4) Determine the nature of quadrilateral AMON. . ($3 / 4 \mathrm{pt}$)
5) Let I be the midpoint of [BM]
a- Show that (OI) is parallel to (MA) . ($3 / 4 \mathrm{pt}$)
b- Deduce the exact measure of the segment OI. ($3 / 4 \mathrm{pt}$)
6) Show that the points N, O and I are collinear. . $(3 / 4 \mathrm{pt})$
7) a - Show that the two triangles OIB and MEO are congruent. ($1^{11 / 2} \mathrm{pt}$)
b- Deduce that BI=EN (1/2 pt)
8) What does the point O represent for triangle MBN? (1 pt)
9) Deduce that (MO) cuts (NB) at its midpoint. ($3 / 4 \mathrm{pt}$)
10) Let K be the symmetric of A with respect to N, and \mathbf{S} the orthogonal projection of K on (AM). $(1 / 4 \mathrm{pt})$
a. What is the nature of the quadrilateral $N O B K$? justify (1 pt)
b. Deduce that the quadrilateral $\boldsymbol{M B K S}$ is a rectangle. (1 pt)
c. Calculate the measure of $[\mathrm{MB}]$ so that the perimeter of $M B K S$ is $15 \mathrm{~cm} .(3 / 4 \mathrm{pt})$
