Name / Nom:
Class / Classe: Gr8 Section: Date:
Exam in / Examen de: $\mathcal{M a t h}$

يمنع استتعمال الآلة الحاسبة

Exercice 1: (13½pts)

Consider the expresion:

$$
P(x)=x^{2}-a-3(x-5)(1-x)
$$

1- Determine the numerical vlaue of a, so that 5 is a root of $P(x) .(1 \mathrm{pt})$
2- From this part on, let $a=25$.
a. Write $\boldsymbol{P}(\boldsymbol{x})$ as a product of 2 factors of the $1^{\text {st }}$ degree in \boldsymbol{x}. (1pt)
b. Find the $2^{\text {nd }}$ root of $\boldsymbol{P}(\boldsymbol{x}) \cdot(1 / 2 p t)$
c. Solve $P(x)=(x-5)^{2} .(1 \mathrm{pt})$

3- Let $Q(x)=3\left(\boldsymbol{x}^{2}-10 x+25\right)-(10-2 x)(x+1)+(x-5)(x+3)$
a. Write $Q(x)$ in the form $a x^{2}+b x+c$, where $a, b \& c$ are integers to be determined. ($11 / 2 \mathrm{pts}$)
b. What does $Q(x)$ represent ? For what values of x is it defined? Justify. ($3 / 4 \mathrm{pt}$)
c. Calculate $\boldsymbol{Q}\left(\frac{-1}{2}\right)$, then verify that the answer obtained is a decimal fraction. (1 pt)

4- Show that $\boldsymbol{Q}(\boldsymbol{x})=2(x-5)(3 x-5)$. $(1 \mathrm{pt})$
5- Let $A B C$ be any triangle so that $\boldsymbol{A B}=\boldsymbol{P}(\boldsymbol{x}) \& \boldsymbol{A C}=\boldsymbol{Q}(\boldsymbol{x})$.
a. Does the side $A B$ exist for $\boldsymbol{x}=5$? Justify. $(3 / 4 \mathrm{pt})$
b. Is there a value of x, for which $A B C$ is an isoscles triangle at A? Justify. ($11 / 4 \mathrm{pts}$)

6- Let $R(x)=\frac{P(x)}{Q(x)}$
a. What does $R(x)$ represent? Justify. ($3 / 4 \mathrm{pt}$)
b. For which value of x is $R(x)$ not defined ? Deduce the domain of definition of $\boldsymbol{R}(\boldsymbol{x})$. (1pt)
c. Simplify $R(x)$ and then calculate $R\left(\frac{1}{2}\right)$.(1pt)
d. Solve $\boldsymbol{R}(\boldsymbol{x})=\frac{-2}{3}$. $(1 \mathrm{pt})$

Exercice 2:(13½pts)

Let $\boldsymbol{A B C}$ be a right triangle at \boldsymbol{A}, where $\boldsymbol{A} \boldsymbol{B}=\frac{3^{32}-3^{31}}{3^{30} \times 2} \mathrm{~cm} \quad \& \quad \boldsymbol{B} \boldsymbol{C}=\frac{4 \times 10^{-2} \times 0.5}{0.02 \times(30)^{-1}}-3(3-1)^{3} \mathrm{~cm}$.

1) Prove that: $A B=3 \mathrm{~cm} \& B C=6 \mathrm{~cm}$. (2pts)
2) Let O be the midpoint of $[B C]$ and R be the symmetric of A with respect to ($B C$).
a. Draw a clear and coded figure.(see figure below) (1pt)
b. Prove that $\frac{A O}{B C}=\frac{1}{2} .(1 \mathrm{pt})$
c. Deduce the nature of triangle $A O B \cdot(3 / 4 \mathrm{pt})$
d. Prove that the quadrilateral $B A O R$ is a rhombus. (1pt)
3) $\operatorname{Let}(C)$ be the circle circumscribed about triangle $A B C \& I$ be the midpoint of $[A C]$.
a. Indicate the center of circle (C) and prove that the point R belongs to (C). (1 pt)
b. Show that $(O I)$ is parallel to $(A B)$ then deduce its length. ($11 / 4 \mathrm{pts}$)
c. Prove that the points $O, I \& R$ are collinear. (1pt)
4) What does the point O represent in the triangle $A R C$? Justify. (1pt)
5) $(A R)$ intersects $(B C)$ at E.
a. Use the two triangles IOC \& $E O R$ to show that $I C=E R$. ($11 / 2 \mathrm{pts}$)
b. Show that $\boldsymbol{O} \widehat{C} \boldsymbol{I}=\boldsymbol{E} \widehat{\boldsymbol{A}} \boldsymbol{B} .(1 \mathrm{pt})$
6) Find the perimeter of $A B R O$. (1pt)

Exercise 3: (13pts)

In the following table only one of the answers proposed to each question is correct. Indicated it with justification. ()

№	Questions	Answers		
		A	B	C
1.	If $A=\frac{8^{2} \times 40^{-1}}{2 \times 6^{-1}}+\frac{1}{5} \quad \& \quad B=\frac{1}{5}+\frac{2^{42}+5 \times 8^{14}}{10 \times 2^{39}}$, then A is (2pts)	Inverse of B	Opposite of B	Equal to B
2.	If $x+y=-6 \& x y=9$, then $x^{2}+y^{2}=$	36	18	54
3.	ABC is a triangle such that: - $\boldsymbol{B C}=\frac{225^{2} \times(-120)}{(-75)^{3} \times 72 \times 0.1}+8 \mathrm{~cm}$. - $\quad M \& N$ are respectively the midpoints of $[A B] \&$ [$A C$] with: $\boldsymbol{M N}=(x+2)^{2}-(x-1)^{2}$ $0<\mathrm{x}<4.5$, then $x=$ (3pts)	$\frac{1}{3}$	$\frac{5}{2}$	$\frac{7}{6}$
4.	In the figure below we have : - $A B C D$ is a square so that $A B=6 \mathrm{~cm}$ - $A E G F$ is a rectangle so that: - $E G=2 \mathrm{~cm}$ \& $\boldsymbol{A E}=1+\frac{4}{9}+\frac{1}{2} \div \frac{9}{28} \mathrm{~cm}$ - $\quad N$ is a point on $[D C]$ such that: $N C=x \mathrm{~cm}(0<x<\sigma) \& M$ is a point on $[A D]$ so that $D M=2 c m$.	$24+x \mathrm{~cm}^{2}$	$24 \mathrm{~cm}^{2}$	$36-x \mathrm{~cm}^{2}$
5.	$A B C$ is any triangle such that: - $[A H]$ is the height relative to $[B C]$. - The perpendicular bisector (d) of $[A H]$ cuts it at I $\&$ cuts $[A B]$ at R. Then R is ($11 / 2 p$ ts)	The midpoint of [AC]	The midpoint of [$A B]$	We cannot say anything
6.	The equation $\frac{3 x-4}{2}-\frac{7}{8}=\frac{6 x-3}{4}$, admits for \boldsymbol{X}	A unique solution	Infinite solutions	No solution
7.	$A B C$ is an isosceles triangle at A such that $B C=3 \mathrm{~cm}$ $\& A B=4 \mathrm{~cm}$. On the parallel drawn from A to ($B C$), place point D such that $A D=B C$. The parallel drawn from D to $(A C)$ cuts $(B C)$ at E. Then the quadrilateral $A B E D$ is a........ ($1^{112 p t s}$)	$\begin{aligned} & \text { Right } \\ & \text { trapezoid } \end{aligned}$	Isosceles trapezoid	square

GoodWork

