
Lycée Des Arts			
<u>Name / Nom</u> :		40	
<u> Class / Classe</u> : Gr8	<u>Section</u> : <u>Date</u> :		
Exam in / Examen de: <i>Math</i>		Midterm	
	يمنع استعمال الآلة الحاسبة		
Exercice 1: (13½pts)	-		
Consider the expresion:			
$P(x) = x^2 - a - 3(x - 5)(1)$			
	al vlaue of a , so that 5 is a root of $P(x)$.(1pt)		
2- From this part on, let a			
-	Let of 2 factors of the 1 st degree in x . (1pt)		
b. Find the 2^{nd} root of F			
c. Solve $P(x) = (x-5)^2$			
	(x + 25) - (10 - 2x)(x + 1) + (x - 5)(x + 3)		
	m $ax^2 + bx + c$, where $a, b \& c$ are integers to be deter	mined. (1½pts)	
b. What does $Q(x)$ repre	esent ? For what values of <i>x</i> is it defined? Justify . (¾pt)		
c. Calculate $Q\left(\frac{-1}{2}\right)$, the	n verify that the answer obtained <u>is a decimal fraction</u> . (1pt)	
4- Show that $Q(x) = 2(x - x)$			
5- Let <i>ABC</i> be any triangl	e so that $AB = P(x) \& AC = Q(x)$.		
a. Does the side AB exis	t for x = 5? Justify. (¾pt)		
	for which <i>ABC</i> is an isoscles triangle at A? Justify. (1¼p	ots)	
6- Let $R(x) = \frac{P(x)}{Q(x)}$			
a. What does $R(x)$ represent	esent? Justify. (¾pt)		
b. For which value of x	is $R(x)$ <u>not defined</u> ? Deduce the domain of definition o	f R (x). (1pt)	
c. Simplify $R(x)$ and the		() (1)	
d. Solve $R(x) = \frac{-2}{3}$. (1pt)		

Exercice 2:(13¹/2pts)

Let *ABC* be a right triangle at *A*, where $AB = \frac{3^{32} - 3^{31}}{3^{30} \times 2} cm$ & $BC = \frac{4 \times 10^{-2} \times 0.5}{0.02 \times (30)^{-1}} - 3(3-1)^3 cm$.

- 1) Prove that: AB = 3cm & BC = 6cm. (2pts)
- 2) Let O be the midpoint of [BC] and R be the symmetric of A with respect to (BC).
 - a. Draw a clear and coded figure.(see figure below) (1pt)
 - b. Prove that $\frac{AO}{BC} = \frac{1}{2}$.(1pt)
 - c. Deduce the nature of triangle *AOB*.(%4pt)
 - d. Prove that the quadrilateral *BAOR* is a rhombus. (1pt)
- 3) Let(C) be the circle circumscribed about triangle ABC & I be the midpoint of [AC].
 - a. Indicate the center of circle (C) and prove that the point R belongs to(C). (1pt)
 - b. Show that (*OI*) is parallel to (*AB*) then deduce its length. (1¼pts)
 - c. Prove that the points *O*, *I* & *R* are collinear. (1pt)
- 4) What does the point *O* represent in the triangle *ARC* ?Justify. (1pt)
- 5) (AR) intersects (BC) at E.
 - a. Use the two triangles IOC & EOR to show that IC = ER. (1¹/₂pts)
 - b. Show that $O\widehat{C}I = E\widehat{A}B$. (1pt)
- 6) Find the perimeter of *ABRO*. (1pt)

Exercise 3: (13pts)

In the following table <u>only one of the answers</u> proposed to each question is correct. Indicated it <u>with</u> <u>justification</u>. ()

N⁰	Quartiene	Answers		
145	Questions	Α	В	C
1.	If $A = \frac{8^2 \times 40^{-1}}{2 \times 6^{-1}} + \frac{1}{5}$ & $B = \frac{1}{5} + \frac{2^{42} + 5 \times 8^{14}}{10 \times 2^{39}}$, then A is (2pts)	Inverse of B	Opposite of B	Equal to B
2.	If $x + y = -6 \& xy = 9$, then $x^2 + y^2 =$ (1pt)	36	18	54
3.	ABC is a triangle such that: • $BC = \frac{225^2 \times (-120)}{(-75)^3 \times 72 \times 0.1} + 8 \text{ cm.}$ • $M \& N$ are respectively the midpoints of $[AB] \& [AC]$ with: $MN = (x + 2)^2 - (x - 1)^2$ 0 < x < 4.5, then $x =$ (3pts)	$\frac{1}{3}$	5 2	$\frac{7}{6}$
4.	In the figure below we have : • ABCD is a square so that $AB = 6$ cm • AEGF is a rectangle so that: • EG = 2 cm • N is a point on [DC] such that: NC = x cm (0 < x < 6) & M is a point on [AD] so that $DM = 2$ cm. • The area of the shaded region is (3pts)	$24 + x \ cm^2$	24 cm ²	36 – x cm²
5.	 <i>ABC</i> is any triangle such that: [<i>AH</i>] is the <u>height relative</u> to [<i>BC</i>]. <u>The perpendicular bisector</u> (<i>d</i>) of [<i>AH</i>] cuts it at <i>I</i> & cuts [<i>AB</i>] at <i>R</i>. Then <i>R</i> is (1½pts) 	The midpoint of [<i>AC</i>]	The midpoint of [AB]	We cannot say anything
6.	The equation $\frac{3x-4}{2} - \frac{7}{8} = \frac{6x-3}{4}$, admits for x (1pt)	A unique solution	Infinite solutions	No solution
7.	ABC is an isosceles triangle at A such that BC = 3cm& AB = 4cm.On the parallel drawn from A to (BC), place point D such that AD = BC .The parallel drawn from D to (AC) cuts (BC) at E .Then the quadrilateral $ABED$ is a	Right trapezoid	Isosceles trapezoid	square

GoodWork