The Islamic Institution For Education \& Teaching Al-Mahdi Schools

Math Department
February 2009

Subject: Mathematics
Grade 11 S

Duration: 150 minutes
The plane, when needed, is referred to an orthonormal system $(\mathrm{O} ; \vec{i} ; \vec{j})$
I. (3 pts)

Each of the following questions has exactly one correct answer. Write down the number of the question then indicate, with justification, the correct answer.

Questions		Answers		
	A	B	C	
1$)$	$\lim _{x \rightarrow-\infty} \frac{-x}{x-\sqrt{1+x^{2}}}=$	$-\frac{1}{2}$	$\frac{1}{2}$	-1
2$)$	The curve representing $f(x)=x^{2}+4 x$ admits as an axis of symmetry the line:	$y=-2$	$x=-2$	$x=-4$
3$)$	Given $f(x)=2 \sin 3 x$ \& $\mathrm{g}(\mathrm{x})=2 \sin (3 \mathrm{x}+6)$. The curve of g is the image of the curve of f by translation of vector:	$\vec{V}(-6 ; 0)$	$\vec{V}(6 ; 0)$	$\vec{V}(-2 ; 0)$

II. (3 pts)

1. Consider the quadratic equation (E) : $(m+1) x^{2}-(m-2) x+1-m=o$

Determine m so that (E) admits 2 distinct real roots.
2. Consider the equation (F$):(\cos a) x^{2}-(2 \sin a) x+\cos a=0$, where a is a real number.
a. Prove that : If (F) admits one double root in R , then $\cos 2 a=0$.
b. Let S and P be the sum and the product of the roots x_{1} and x_{2} of (F), when they exist.

Write $\tan 2 a$ in terms of S and P .
III. (5 pts) Remark: The parts of this question are independent.

1. Given $\mathrm{f}(\mathrm{x})=\frac{-2 x^{2}}{\sqrt{5 x+2}} \quad\left(x>\frac{-2}{5}\right) \quad$ and $\quad \mathrm{g}(\mathrm{x})=(\cos 5 \mathrm{x}-\sin \mathrm{x})^{3}$

Find $f^{\prime}(x)$ and $g^{\prime}(x)$.
2. Let f be a function defined by: $\begin{cases}\frac{1}{2} & \text { for } x=0 \\ a \frac{\sin 2 x}{x} & \text { for } x \neq 0\end{cases}$

Find "a" so that f is continuous at 0 .
3.
a. Show that $\tan \left(\frac{\pi}{4}-x\right)=\frac{\cos x-\sin x}{\cos x+\sin x}$
b. Deduce that : $\frac{\cos 2 x}{1+\sin 2 x}=\tan \left(\frac{\pi}{4}-x\right)$

IV. ($3^{1 / 2} \mathbf{p t s}$)

Given a circle (C): $x^{2}-2 x+y^{2}=2$ and the points $\mathrm{A}(2, \sqrt{2})$ and $\mathrm{N}(\mathrm{x}, \sqrt{2})$

1. Determine the center W and the radius R of the circle (C).
2. Show that A belongs to (C) .
3.

a. Show that $(\mathbf{N W})^{\mathbf{2}}-\mathbf{R}^{\mathbf{2}}=x^{2}-2 x$
b. Deduce the values of x so that N is exterior point of (C)
4. Solve in R the following system :

$$
\left\{\begin{array}{l}
\frac{x-1}{-x^{2}-2 x-1} \geq 0 \\
x^{2}-2 x>0
\end{array}\right.
$$

V. ($3^{1 / 2} \mathbf{~ p t s}$)

Consider the sequence (Un) defined by $\mathrm{U}_{0}=0$ and $U_{n+1}=\frac{2 U_{n}+1}{U_{n}+2} \quad(\mathrm{Un} \neq-2$ for all $\mathrm{n} \in \mathrm{N})$

1. Calculate $\mathrm{U}_{1}, \mathrm{U}_{2} \& \mathrm{U}_{3}$.
2. Consider the sequence $\left(\mathrm{V}_{\mathrm{n}}\right)$ defined by $V_{n}=\frac{U_{n}-1}{U_{n}+1}$
a. Show that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio and first term are to be determined.
b. Find, in terms of n, V_{n} and U_{n}.
c. Determine, in terms of $\mathrm{n}, \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{V}_{\mathrm{i}}$.

VI. (6 pts)

A. Consider the function f defined over IR; by: $\mathrm{f}(\mathrm{x})=a x^{4}+b x^{2}$ and let (C) be the representative curve of f.

1. Determine a \& b so that (C) admits $\mathrm{A}(1 ; 1)$ as maximum.
B. Consider in this part $\mathrm{a}=-1 \& \mathrm{~b}=2$
a. Study the variations of f .
b. Prove that $-x^{4}+2 x^{2}=0$ admits 3 different roots.
c. Draw the representative curve (C) of f in an orthonormal reference $(\mathrm{O} ; \mathrm{i}, \dot{\mathrm{j}})$.
2. Let $\mathrm{g}(\mathrm{x})=\left|-x^{4}+2 x^{2}\right|$
b. Construct the graphical representation of the function g .
c. Study, graphically ,the differentiability of g at the point of abscissa $\sqrt{2}$
