In his name

The Islamic Institution For
Education & Teaching
Al-Mahdi Schools

Mid Year Exam

Math Department February 2009

Subject: Mathematics

Grade 11 S

Duration: 150 minutes

The plane, when needed, is referred to an orthonormal system $(O; \vec{i}; \vec{j})$

I. (3 pts)

Each of the following questions has exactly one correct answer. Write down the number of the question then indicate, with **justification**, the correct answer.

Questions		Answers		
		Α	В	С
1)	$\lim_{x \to -\infty} \frac{-x}{x - \sqrt{1 + x^2}} =$	$-\frac{1}{2}$	$\frac{1}{2}$	-1
2)	The curve representing $f(x) = x^2 + 4x$ admits as an axis of symmetry the line:	<i>y</i> = -2	<i>x</i> = -2	<i>x</i> = -4
3)	Given $f(x) = 2\sin 3x \& g(x) = 2\sin(3x + 6)$. The curve of g is the image of the curve of f by translation of vector:	<i>V</i> (-6;0)	$\vec{V}(6;0)$	<i>V</i> (-2;0)

II. (3 pts)

- 1. Consider the quadratic equation (E) : $(m+1)x^2 (m-2)x + 1 m = o$ Determine m so that (E) admits 2 distinct real roots.
- 2. Consider the equation (F): $(\cos a)x^2 (2\sin a)x + \cos a = 0$, where *a* is a real number.
 - **a.** Prove that : If (F) admits one double root in R , then $\cos 2a = 0$.
 - **b.** Let S and P be the sum and the product of the roots x_1 and x_2 of (F), when they exist. Write tan 2a in terms of S and P.

III. (5 pts) <u>Remark</u>: The parts of this question are independent.

1. Given $f(x) = \frac{-2x^2}{\sqrt{5x+2}}$ $(x > \frac{-2}{5})$ and $g(x) = (\cos 5x - \sin x)^3$ Find f'(x) and g'(x). 2. Let f be a function defined by: $\begin{cases} \frac{1}{2} & \text{for } x = 0\\ a\frac{\sin 2x}{x} & \text{for } x \neq 0 \end{cases}$ Find "a" so that f is continuous at 0. 3.

a. Show that
$$\tan(\frac{\pi}{4} - x) = \frac{\cos x - \sin x}{\cos x + \sin x}$$

b. Deduce that :
$$\frac{\cos 2x}{1 + \sin 2x} = \tan(\frac{\pi}{4} - x)$$

IV. (3¹/₂ pts)

Given a circle (C): $x^2 - 2x + y^2 = 2$ and the points A(2, $\sqrt{2}$) and N(x, $\sqrt{2}$)

- **1.** Determine the center W and the radius R of the circle (C).
- **2.** Show that A belongs to (C).

3.

- a. Show that $(NW)^2 R^2 = x^2 2x$
- b. Deduce the values of x so that N is exterior point of (C)
- 4. Solve in R the following system :

$$\begin{cases} \frac{x-1}{-x^2-2x-1} \ge 0\\ x^2-2x > 0 \end{cases}$$

V. $(3 \frac{1}{2} \text{ pts})$

Consider the sequence (Un) defined by U₀=0 and $U_{n+1} = \frac{2U_n + 1}{U_n + 2}$ (Un \neq -2 for all n \in N)

- **1.** Calculate U_1 , $U_2 \& U_3$.
- 2. Consider the sequence (V_n) defined by $V_n = \frac{U_n 1}{U_n + 1}$
 - a. Show that (V_n) is a geometric sequence whose common ratio and first term are to be determined.
 - b. Find, in terms of n, V_n and U_n .
 - c. Determine, in terms of n, $\sum_{i=0}^{n} V_i$.

VI. (6 pts)

- A. Consider the function f defined over IR; by: $f(x) = ax^4 + bx^2$ and let (C) be the representative curve of f.
 - **1.** Determine a & b so that(C) admits A (1; 1) as maximum.
- **B.** Consider in this part a=-1 & b = 2
 - **a.** Study the variations of f.
 - **b.** Prove that $-x^4 + 2x^2 = 0$ admits 3 different roots.
 - **c.** Draw the representative curve (C) of f in an orthonormal reference (O; i, j).

2. Let $g(x) = \left| -x^4 + 2x^2 \right|$

- b. Construct the graphical representation of the function g.
- c. Study, graphically ,the differentiability of g at the point of abscissa $\sqrt{2}$