Grade: $11^{\text {th }}$ Scientific

I. (2 points)

In the table below, one of the answers is correct. Write the letter corresponding to the correct Answer and justify.

Questions		Answers			
		A	B	C	D
1)	Knowing that: $\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$, then $\cos \frac{\pi}{8}=$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$
2)	In an orthonormal system consider the equation of circle (C): $2 x^{2}+2 y^{2}+4 x-8 y+4=0$ The center Ω and the radius r of (C) are:	$\begin{gathered} \Omega(1 ;-2) \\ r=3 \end{gathered}$	$\begin{gathered} \Omega(1 ;-2) \\ r=\sqrt{3} \end{gathered}$	$\begin{gathered} \Omega(-1 ; 2) \\ r=3 \end{gathered}$	$\begin{gathered} \Omega(-1 ; 2) \\ r=\sqrt{3} \end{gathered}$
3)	$\lim _{x \rightarrow-\infty} \frac{2 x+3}{\sqrt{9 x^{2}-1}}=$	$\frac{2}{3}$	0	$-\frac{2}{3}$	$-\infty$

II. (5.5 Points)

1. Calculate the derivative of the following functions:
a) $f(x)=\frac{3}{x^{2}+1}+\sqrt{x^{2}-1}$ defined on $]-\infty ;-1[\cup]-1 ;+\infty[$
b) $f(x)=\sin ^{2}\left(x^{2}\right)$ defined on IR.
2. Determine the domain of the following function $f(x)=\sqrt{\frac{2 x^{2}+3 x-5}{x^{2}+x-2}}$.
3. Given the function f defined on IR by :
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4 x+3}{x^{2}-3 x+2} & \text { si } x<1 \\ k^{2}+k & \text { si } x=1 \\ \frac{1-x}{1-\sqrt{x}} & \text { si } x>1\end{array} \quad ; \quad \mathrm{k}\right.$ is a real constant
a-Calculate $\lim _{\substack{x \rightarrow 1 \\ x<1}} f(x)$ and $\lim _{\substack{x \rightarrow 1 \\ x>1}} f(x)$.
b- Find k so that f is continuous at $x=1$

III. (3 points)

Consider the second degree equation in $x(\mathrm{E}):(\mathrm{m}-1) x^{2}-2(\mathrm{~m}-2) x+\mathrm{m}-7=0 ; m \in I R$.

1. Calculate m knowing that one of the roots is 4 , and deduce the other root.
2. Calculate m so that (E) admits two distinct roots.
3. Let $F=\frac{\left(x_{1}-1\right)\left(x_{2}-1\right)}{x_{1}^{2}+x_{2}^{2}}$, with x_{1} and x_{2} are the roots of (E) when they exist, without calculate x_{1} and x_{2} verify that: $F=\frac{2(1-m)}{m^{2}+1}$.
4. On an axis x'ox place the points $M_{1}\left(x_{1}\right)$ and $M_{2}\left(x_{2}\right)$. Calculate m so that M_{1} and M_{2} are symmetric with respect to the point I of abscissa $\frac{-3}{2}$.

IV. (3 points)

1. Prove that: $\sin ^{2} 3 a \cdot \cos ^{2} a-\cos ^{2} 3 a \cdot \sin ^{2} a=2 \cos 2 a \cdot \sin ^{2} 2 a$.
2. Simplify: $E=\frac{\sin ^{2} 3 a \cdot \cos ^{2} a-\cos ^{2} 3 a \cdot \sin ^{2} a}{\cos ^{3} 2 a+\cos ^{2} 2 a}$.
3. Verify that: $\frac{E}{2 \tan a}=\frac{2 \tan a}{1-\tan ^{2} a}$.

V. (6 points)

Define the sequence u_{n} by: $\left\{\begin{array}{l}u_{0}=1 \\ u_{n+1}=\frac{1}{2} u_{n}+2 n-1\end{array}\right.$

1. Prove that $u_{1}=-\frac{1}{2}$, then calculate u_{2} and u_{3}. Is the sequence $\left(u_{n}\right)$ arithmetic or geometric?
2. Let $\mathrm{v}_{\mathrm{n}}=\mathrm{u}_{\mathrm{n}}-4 \mathrm{n}+10$. Calculate $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$.
3. Prove that the sequence $\left(v_{n}\right)$ is geometric; calculate its common ratio r and first term v_{0}.
4. Deduce v_{n} as a function of n .
5. Prove that an expression of u_{n} as a function of n is given by: $u_{n}=11 \times\left(\frac{1}{2}\right)^{n}+4 n-10$.
6. $T_{n}=v_{0}+v_{1}+v_{2}+\cdots+v_{n}$. Give an expression of T_{n} as a function of n.
VI. (2.75 points)

Let f be a function defined on IR. Let (G) be the representative curve of f in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.
$f(0)=-2, \quad f(1)=0, \quad f(-1)=-4$, $\lim _{x \rightarrow-\infty} f(x)=-\infty$, et $\lim _{x \rightarrow+\infty} f(x)=-\infty$. The figure at the right (C) is the curve of the function f^{\prime}, the derivative of f. using (C) :

1. Determine: $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$.
2. Write the equation of tangent (T) to (G) at the point of abscissa 0 .
3. Draw the table of variation of f.

4. Deduce the sign of f on IR.

VII. (7.75 points)

Let g be a function defined on IR by $g(x)=x^{4}-6 x^{2}+8 x+20$, designate by (C) its representative curve in an orthonormal system $(O ; \vec{i} ; \vec{j})$.

1. Determine the limits of g at the open boundaries of its domain.
2. Show that $x^{3}-3 x+2=(x-1)^{2}(x+2)$
3. Calculate $g^{\prime}(x)$, then deduce it's sign.
4. Draw the table of variations of g.
5. Prove that the equation $g(x)=0$, admits on IR two roots α and β, and verify that $-3<\alpha<-2$ and that $-2<\beta<-1$.
6. Prove that g admits two points of inflection, to be determined.
7. Trace (C).
8. Let $h(x)=g(|x|)$.

Explain how to deduce the graphical representation (C^{\prime}) of h from (C) and draw (C^{\prime}) in the system $(O ; \vec{i} ; \vec{j})$.

GOOD WORK

