Mid-Year Exam

Subject: Mathematics

Duration: 150 minutes

Grade: 11th Scientific

I. (2 points)

In the table below, one of the answers is correct. Write the letter corresponding to the correct Answer and justify.

Questions		Answers			
		Α	В	С	D
1)	Knowing that: $\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$, then $\cos\frac{\pi}{8} =$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$-\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$
2)	In an orthonormal system consider the equation of circle (C): $2x^{2} + 2y^{2} + 4x - 8y + 4 = 0.$ The center Ω and the radius r of (C) are:	$\Omega(1;-2)$ $r=3$	$\Omega(1;-2)$ $r=\sqrt{3}$	$\Omega(-1;2)$ $r = 3$	$\Omega(-1;2)$ $r=\sqrt{3}$
3)	$\lim_{x \to -\infty} \frac{2x+3}{\sqrt{9x^2-1}} =$	$\frac{2}{3}$	0	$-\frac{2}{3}$	- ∞

II. (5.5 Points)

- **1.** Calculate the derivative of the following functions:
 - a) $f(x) = \frac{3}{x^2 + 1} + \sqrt{x^2 1}$ defined on $]-\infty; -1[\cup]-1; +\infty[$
 - b) $f(x) = \sin^2(x^2)$ defined on IR.

2. Determine the domain of the following function $f(x) = \sqrt{\frac{2x^2 + 3x - 5}{x^2 + x - 2}}$.

3. Given the function f defined on IR by :

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} & \text{si } x < 1\\ k^2 + k & \text{si } x = 1\\ \frac{1 - x}{1 - \sqrt{x}} & \text{si } x > 1 \end{cases}$$
; k is a real constant
a-Calculate $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$ and $\lim_{\substack{x \to 1 \\ x > 1}} f(x)$.
b- Find k so that f is continuous at $x = 1$

III. (3 points)

Consider the second degree equation in x (E): $(m-1)x^2 - 2(m-2)x + m - 7 = 0$; $m \in IR$.

- 1. Calculate m knowing that one of the roots is 4, and deduce the other root.
- 2. Calculate m so that (E) admits two distinct roots.
- 3. Let $F = \frac{(x_1 1)(x_2 1)}{x_1^2 + x_2^2}$, with x_1 and x_2 are the roots of (E) when they exist, without

calculate x_1 and x_2 verify that : $F = \frac{2(1-m)}{m^2+1}$

4. On an axis x'ox place the points $M_1(x_1)$ and $M_2(x_2)$. Calculate m so that M_1 and M_2 are symmetric with respect to the point I of $abscissa\frac{-3}{2}$.

IV. (3 points)

- 1. Prove that : $\sin^2 3a \cdot \cos^2 a \cos^2 3a \cdot \sin^2 a = 2\cos 2a \cdot \sin^2 2a$.
- 2. Simplify: $E = \frac{\sin^2 3a \cdot \cos^2 a \cos^2 3a \cdot \sin^2 a}{\cos^3 2a + \cos^2 2a}$.

3. Verify that:
$$\frac{E}{2\tan a} = \frac{2\tan a}{1 - \tan^2 a}.$$

V. (6 points)

Define the sequence u_n by: $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + 2n - 1 \end{cases}$

- **1.** Prove that $u_1 = -\frac{1}{2}$, then calculate u_2 and u_3 . Is the sequence (u_n) arithmetic or geometric?
- **2.** Let $v_n = u_n 4n + 10$. Calculate v_0 , v_1 , v_2 , v_3 .
- 3. Prove that the sequence (v_n) is geometric; calculate its common ratio r and first term v_0 .
- **4.** Deduce v_n as a function of n.
- 5. Prove that an expression of u_n as a function of n is given by: $u_n = 11 \times \left(\frac{1}{2}\right)^n + 4n 10$.
- 6. $T_n = v_0 + v_1 + v_2 + \cdots + v_n$. Give an expression of T_n as a function of n.

VII. (7.75 points)

Let g be a function defined on IR by $g(x) = x^4 - 6x^2 + 8x + 20$, designate by (C) its representative curve in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1. Determine the limits of g at the open boundaries of its domain.
- 2. Show that $x^3 3x + 2 = (x 1)^2 (x + 2)$
- **3.** Calculate g'(x), then deduce it's sign.
- 4. Draw the table of variations of g.
- 5. Prove that the equation g(x) = 0, admits on IR two roots α and β , and verify that $-3 < \alpha < -2$ and that $-2 < \beta < -1$.
- 6. Prove that g admits two points of inflection, to be determined.
- **7.** Trace (C).
- 8. Let h(x) = g(|x|).

Explain how to deduce the graphical representation (C ') of *h* from (C) and draw (C ') in the system $(O; \vec{i}; \vec{j})$.

GOOD WORK