Sulyject: Mathematics

Grade 11(S)

Mark: ------ I
Duration: 150 minutes

I. (points)

One, among the following answers, is true. Choose it after you justify your answer.

	Question	A	B	C
1	$a \& b$ are two real numbers such that : $\left\{\begin{array}{l} 3 a+3 b=-8 \\ a b=-1 \end{array}\right.$ then $a \& b$ are the roots of the quadratic equation:	$x^{2}+\frac{8}{3} x+1=0$	$3 x^{2}+8 x-3=0$	$x^{2}-\frac{8}{3} x-1=0$
2	If $h(x)=\frac{3}{\sqrt{x^{2}+1}}$ then $h^{\prime}(x)=$	$\frac{-3}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}$	$\frac{-3 x}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}$	$\frac{-6 x}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}$
3	The value of m for which $f(x)=m x^{3}+(m-6) x+7=0$ admits an extremum at $x_{0}=\frac{1}{3}$ is:	$\frac{7}{6}$	$\frac{1}{2}$	$\frac{9}{2}$

II. (points)

Consider the second degree equation $(E): x^{2}+2 m x+m^{2}+m+5=0$ with m is a real parameter.

1. Calculate Δ or Δ^{\prime} and discuss according to the values of m the existence of the roots of Equation (E).
2. Without calculating the roots $x_{1} \& x_{2}$, determine m so that the roots of the equation (E)

Verify the relation $\left(x_{1}+1\right)\left(x_{2}+1\right)=12$
III.

1. Calculate the following limits:

a. $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{3 x^{2}-2 x-1}=$
b. $\lim _{\alpha \rightarrow 0} \frac{\sqrt{1+\sin \alpha}-1}{\alpha}=$
c. $\lim _{x \rightarrow 0} \frac{\pi\left(\cos ^{2} x-\cos x\right)}{\cos ^{2} x-3 \cos x+2}=$
2. Given $f(x)= \begin{cases}\frac{x^{2}-a^{2}}{x+2} & \text { if } x \leq 0 \\ x+\frac{a}{2}-1 & \text { if } x>0\end{cases}$

Calculate a so that f is continuous at $x_{0}=0$.

IV. (points)

Consider the sequences $\left(\mathrm{U}_{\mathrm{n}}\right)$ and $\left(\mathrm{V}_{\mathrm{n}}\right)$ defined by $\mathrm{U}_{0}=1, \mathrm{U}_{\mathrm{n}+1}=\frac{U_{n}-3}{2}$ and $\mathrm{V}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}}+3$.

1. Calculate $\mathrm{V}_{0}, \mathrm{~V}_{1}$ and V_{2}.
2. Prove that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio is to be determined.
3. Express V_{n} and U_{n} in terms of n.
4. Calculate $S_{n}=\sum_{i=0}^{n} V_{i}$ then deduce $S_{n}^{\prime}=U_{1}+U_{2}+\ldots \ldots \ldots . .+U_{n}$.

V. (points)

Given the circle (C) of equation: $x^{2}-2 x+y^{2}-4 y-4=0$

1. Determine the center I and the radius R of circle (C).
2. Does line of equation ($y=-x$) cuts circle (C) ?If yes , determine the coordinates of the points of intersection.
VI. (points)
3. Let x be a real number such that $x \in] \pi ; \frac{3 \pi}{2}[$ with $\sin x=-0.8$.
a. Calculate $\cos x$ and $\sin 2 x$.
b. Find $\tan 2 x$.
4. Given $A \in] \frac{\pi}{2}, \pi\left[\right.$ and $(\tan \mathrm{A} \cdot \tan \mathrm{B})=-1$ and $(\mathrm{A}+\mathrm{B})=\frac{5 \pi}{6}$.
a. Show that $\tan (A+B)=-\frac{\sqrt{3}}{3}$
b. Show that $\tan \mathrm{A}+\tan \mathrm{B}=-2 \frac{\sqrt{3}}{3}$
5. Given a direct triangle ABC.
a. Show that $\sin (2 A)+\sin (2 B)+\sin (2 C)=4 \sin A \cdot \sin B \cdot \sin C$
b. Deduce that : $\frac{\cos A}{\sin B \cdot \sin C}+\frac{\cos B}{\sin A \cdot \sin C}+\frac{\cos C}{\sin A \cdot \sin B}=2$

VII. (points)

Consider the curve (C) of a function f

Note: (C) cuts $x^{\prime} \mathrm{O} x$ at 0 and at 3
(C) admits a horizontal tangent at $x=0$ and at $x=2$.

1. Set up the table of variations of f.
2. Solve graphically: $f(x)<0 ; f(x) \geq 0 ; f^{\prime}(x)=0$.
3. Discuss graphically according to the values of m the number of roots of the equation $f(x)=\mathrm{m}$.
4. One of the graphs (H) or (G) below represents the Derivative function f^{\prime} of f.
a. Determine the graph of f^{\prime}. Justify your answer.
b. Write the equation of the tangent to (C) at $x=1$.

5. Assume that f is defined by: $f(x)=\mathrm{a} x^{3}+\mathrm{b} x^{2}+\mathrm{c} x$.

Use (C) to calculate a, b and c .

VIII. (points)

Consider the function f defined over IR by $f(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{2}+2 x+2$ and let (C) be its representative curve.

1. Determine the limits of f at $-\infty$ and $+\infty$.
2. Verify that $f^{\prime}(x)=x^{3}-3 x+2=(x+2)(x-1)^{2}$
3. Set up the table of variation of f.
4. Deduce that $f(x)=0$ admits two distinct roots $\alpha \& \beta$.
5. Show that f admits two inflection points to be determined.
6. Given that $\alpha \in]-3 ;-2.5[\quad \& \quad \beta \in]-1 ;-0.5[$;

Draw (C) in an orthonormal system.
7. Deduce (C^{\prime}) the graph of g where $\mathrm{g}(x)=|f(x)|$.

