The Islamic Institution For Education \& Teaching Al-Mahdi Schools		Mathematics Department Feb 2014
Subject : Mathematics	Mid-year Exam	عدد المسائل: 7
Grade11(Sc)		Duration:150 min

Exercise I (4 points)

In the following table, only one of the answers to each question is correct.
Write the number of each question and give, with justification, the answers that correspond to it.

\mathbf{N}°	Questions	Answers		
		\mathbf{a}	\mathbf{b}	\mathbf{c}
$\mathbf{1}$	Let f be a function such that $\mathrm{f}(2-\mathrm{x})+4=-\mathrm{f}(\mathrm{x})$ $\left(C_{f}\right)$ admits a center of symmetry :	$\mathrm{w}(1 ; 2)$	$\mathrm{w}(1 ;-2)$	$\mathrm{w}(2 ;-2)$
$\mathbf{2}$	$\lim _{x \rightarrow 1}\left(\frac{\sqrt{x+3}-2}{x^{2}-1}\right)=$	$\frac{1}{8}$	$-\frac{1}{8}$	$\frac{1}{4}$
$\mathbf{3}$	The equation $2013 \mathrm{x}^{4}+\mathrm{x}^{2}-2014=0$ admits	2 solutions	4 solutions	No solution
$\mathbf{4}$	If $\mathrm{f}(\mathrm{x})=\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}$ then $\quad \mathrm{f}^{\prime}(\mathrm{x})=$	$2 \sin 2 \mathrm{x}$	$\sin 2 \mathrm{x}$	$-2 \sin 2 \mathrm{x}$

Exercise II (5 points)

Given $T(x)=x^{2}-2(2 m+1) x+2 m+3$ where m is a real parameter. x^{\prime} and $x^{\prime \prime}$ are the roots of the equation $\mathrm{T}(\mathrm{x})=0$ when they exist.

1. Show that the discriminant of $T(x)=0$ is $\Delta=16 m^{2}+8 m-8$.
2. Discuss according to the values of m, the number of roots of the equation $T(x)=0$.
3. Calculate m so that $T(x)>0$ for all values of x.
4. ABC is a right triangle at A such that $\mathrm{AB}=\left|\mathrm{x}^{\prime}\right|$ and $\mathrm{AC}=|\mathrm{x}| \mid$; Calculate m so that $\mathrm{BC}=\sqrt{2}$.

Exercise III(2 points)

Let f be the function defined in IR by: $\mathrm{f}(\mathrm{x})= \begin{cases}x^{2}-a & \text { for } x \leq 2 \\ x-\frac{a}{3} & \text { for } x>2\end{cases}$

1. Determine the real " a " for f is continuous at $x=2$.
2. Take $a=3$.Study the differentiability of f at the point $x=2$.Give the graphical interpretation.

Exercise IV (6 points)

Consider the sequence $\left(U_{n}\right)$ defined by : $U_{0}=2 U_{n+1}=\frac{1}{2} U_{n}+3$.

1. Calculate U_{1} and U_{2} then verify that $\left(U_{n}\right)$ is neither arithmetic nor geometric.
2. let $V_{n}=U_{n}-6$
a. Show that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio and first term are to be determined.
b. Calculate Vn and Un in terms of n .
3. Calculate the sum $S_{n}=V_{0}+V_{1}+\ldots \ldots . .+V_{n}$ in terms of n and deduce $S_{n}^{\prime}=U_{0}+U_{1}+$ \qquad

Exercise V (7 points)

1) x and y are 2 acute angles such that : $\tan x=\frac{1}{2}$ and $\tan y=\frac{1}{3}$. Calculate $\tan (x+y)$ and deduce $(x+y)$.
2) Show that $\frac{\left(\cos \frac{\pi}{8}+\sin \frac{\pi}{8}\right)^{2}}{\cos ^{2} \frac{\pi}{8}-\sin ^{2} \frac{\pi}{8}}=\sqrt{2}+1$.
3) Given $\sin x=\frac{1}{4}(\sqrt{5}-1)$ and $0<\mathrm{x}<\frac{\pi}{2}$
a) Calculate $\cos 2 x$ and $\sin 2 x$.
b) Verify that $\cos 4 x=\sin x$.

Exercise VI(12 points)

Part A :

Let g be the function defined on IR by $g(x)=a x^{3}+b x+c ; \mathrm{a}, \mathrm{b}$, and c are non-zero real numbers.
(C^{\prime}) is the representative curve of g . use the adjacent graph (\mathbf{C}^{\prime}).

1. Show that $a=1, b=-3$ and $c=2$.
2. Show that g admits a point of inflexion whose coordinates are to be determined.
3. Construct the table of variation of g.
4. Solve: $g(x)=0$ and $g(x)>0$.

Part B :

Consider the function f defined on IR by $f(x)=\frac{x^{4}}{4}-\frac{3}{2} x^{2}+2 x+2$ let (C)
 be its representative curve.

1. Calculate the limits at the open boundaries of the domain of definition.
2. Calculate $f^{\prime}(x)$ show that $f^{\prime}(x)$ and $g(x)$ have the same sign.
3. Construct the table of variations of f.
4. Show that f has two points of inflexion to be determined.
5. Show that the equation $f(x)=0$ has two roots α and β such that $-0.8<\alpha<-0.6$ and $-2.9<\beta<-2.7$.
6. Trace (C).
7. Let $\mathrm{h}(\mathrm{x})=|f(x)|$ and let $\left(C_{h}\right)$ be its representative curve.

Trace $\left(C_{h}\right)$ with justification.

Exercise VII (4 points)

(C) and (C^{\prime}) are two circles of centers I and I 'and radii R and R ' such that:
(C) : $x^{2}+y^{2}-4 x-8 y-5=0$ and (C') : $x^{2}+y^{2}-8 x-18 y-3=0$.

1. Find the coordinates of I and I^{\prime}, and calculate R and R'.
2. Prove that the point $A(-2 ; 1)$ belongs to (C) and find an equation of the tangent (L) at A to (C).
3. Given (d): $y=2 x+5$. Study the intersection between (d) and (C^{\prime}).
