The Islamic Institution For Education & Teaching Al-Mahdi Schools		Mathematics Department Feb 2014		
Subject : Mathematics	Mid-year Exam	عدد المسائل: 7		
Grade11(Sc)	2	Duration:150 min		
ملاحظة بسمح باستخداء آلة جاسبة خبر قلالة البرمجة أبراجتنان المجآرمات أبريس البرازات				

ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات او رسم البيانات يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

Exercise I (4 points)

In the following table, only one of the answers to each question is correct.

Write the number of each question and give, with justification, the answers that correspond to it.

No	Questions	Answers		
14	Questions	а	b	с
1	Let f be a function such that $f(2 - x) + 4 = -f(x)$ (C _f) admits a center of symmetry :	w(1 ;2)	w(1 ;-2)	w(2 ;-2)
2	$\lim_{x \to I} \left(\frac{\sqrt{x+3}-2}{x^2-1} \right) =$	$\frac{1}{8}$	$-\frac{1}{8}$	$\frac{1}{4}$
3	The equation $2013x^4 + x^2 - 2014 = 0$ admits	2 solutions	4 solutions	No solution
4	If $f(x) = \cos^2 x - \sin^2 x$ then $f'(x) =$	2sin2x	sin2x	–2sin2x

Exercise II (5 points)

Given $T(x) = x^2 - 2(2m + 1)x + 2m + 3$ where m is a real parameter. x' and x" are the roots of the equation T(x) = 0 when they exist.

- 1. Show that the discriminant of T(x) = 0 is $\Delta = 16 \text{ m}^2 + 8 \text{ m} 8$.
- 2. Discuss according to the values of m, the number of roots of the equation T(x) = 0.
- 3. Calculate m so that T(x) > 0 for all values of x.
- 4. ABC is a right triangle at A such that AB = |x'| and AC = |x''|; Calculate m so that $BC = \sqrt{2}$.

Exercise III(2 points)

Let f be the function defined in IR by: $f(x) = \begin{cases} x^2 - a & \text{for } x \le 2\\ x - \frac{a}{3} & \text{for } x > 2 \end{cases}$

1. Determine the real "a" for f is continuous at x = 2.

2. Take a=3.Study the differentiability of f at the point x=2.Give the graphical interpretation.

Exercise IV (6 points)

Consider the sequence (U_n) defined by : $U_0 = 2 U_{n+1} = \frac{1}{2}U_n + 3$.

- 1. Calculate U_1 and U_2 then verify that (U_n) is neither arithmetic nor geometric.
- 2. let $V_n = U_n 6$
 - a. Show that (V_n) is a geometric sequence whose common ratio and first term are to be determined.
 - b. Calculate Vn and Un in terms of n.
- 3. Calculate the sum $S_n = V_0 + V_1 + \dots + V_n$ in terms of n and deduce $S'_n = U_0 + U_1 + \dots + U_n$.

Exercise V (7 points)

1) x and y are 2 acute angles such that : $\tan x = \frac{1}{2}$ and $\tan y = \frac{1}{3}$. Calculate $\tan(x + y)$ and deduce (x + y).

2) Show that
$$\frac{\left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right)^2}{\cos^2\frac{\pi}{8} - \sin^2\frac{\pi}{8}} = \sqrt{2} + 1.$$

3) Given $\sin x = \frac{1}{4}(\sqrt{5} - 1)$ and $0 < x < \frac{\pi}{2}$
a) Calculate $\cos 2x$ and $\sin 2x$.

b) Verify that $\cos 4x = \sin x$.

Exercise VI(12 points)

Part A:

Let g be the function defined on IR by $g(x) = ax^3 + bx + c$; a, b, and c are non-zero real numbers.

- (C') is the representative curve of g. use the adjacent graph (C').
- 1. Show that a=1, b=-3 and c=2.
- 2. Show that g admits a point of inflexion whose coordinates are to be determined.
- 3. Construct the table of variation of g.
- 4. Solve: g(x) = 0 and g(x) > 0.

Part B:

Consider the function f defined on IR by $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + 2x + 2$ let (C)

be its representative curve.

- 1. Calculate the limits at the open boundaries of the domain of definition.
- 2. Calculate f'(x) show that f'(x) and g(x) have the same sign.
- 3. Construct the table of variations of f.
- 4. Show that f has two points of inflexion to be determined.
- 5. Show that the equation f(x) = 0 has two roots α and β such that $-0.8 < \alpha < -0.6$ and $-2.9 < \beta < -2.7$.
- 6. Trace (C).
- 7. Let h(x) = |f(x)| and let (C_h) be its representative curve.

Trace (C_h) with justification.

Exercise VII (4 points)

(C) and (C') are two circles of centers I and I 'and radii R and R' such that:

(C): $x^{2} + y^{2} - 4x - 8y - 5 = 0$ and (C'): $x^{2} + y^{2} - 8x - 18y - 3 = 0$.

- 1. Find the coordinates of I and I', and calculate R and R'.
- 2. Prove that the point A (-2; 1) belongs to (C) and find an equation of the tangent (L) at A to (C).
- 3. Given (d): y = 2x + 5. Study the intersection between (d) and (C').

