IN HIS NAME

The Islamic Institution For Education \& Teaching
 Al-Mahdi Schools

Mid-Year Exam

Math Department
February 2015

Mark: 30 points
Subject: Mathematics
Class: Grade 11 - Scientific

I- (6 points)

Remark: The three parts of this question are independent.

1) Determine the derivative function of each of the following functions.
a) $g(x)=\left(\frac{2 x}{x-1}\right)^{2}$.
b) $\mathrm{h}(\mathrm{x})=\frac{1}{\sqrt{2 \mathrm{x}-3}}$.
2) Consider the function f defined, on \mathbb{R}, by: $f(x)=\frac{3 \cos x-1}{x^{2}+2}$.
a) Show that: $\frac{-4}{x^{2}+2} \leq f(x) \leq \frac{2}{x^{2}+2}$.
b) Deduce $\lim _{x \rightarrow+\infty} f(x)$.
3) Given the function f defined, on \mathbb{R}, by: $f(x)= \begin{cases}\frac{x^{2}-5 x+4}{18 x-72} & \text { for } x<4 \\ b-1 & \text { for } x=4, \text { where } b \text { is a real number. } \\ \frac{3-\sqrt{x+5}}{4-x} & \text { for } x>4\end{cases}$
a) Prove that $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=\frac{1}{6}$.
b) Find the value of b so that f is continuous at $x=4$.

II- (2.5 points)

Consider the second degree equation (E): $x^{2}-2(m-1) x+m^{2}+2=0$, where m is a real parameter.

1) Determine m so that " -3 " is a root of the equation (E).
2) Determine the set of values of m so that the equation (E) admits two distinct real roots x^{\prime} and $x^{\prime \prime}$.
3) Determine the set of values of m if $\frac{m}{x^{\prime}}+\frac{m}{x^{\prime \prime}} \geq 0$.

III- (4 points)

Let $\left(U_{n}\right)$ be a sequence defined, for every natural number n, by: $\left\{\begin{array}{l}U_{0}=1 \\ U_{n+1}=U_{n}+\frac{1}{2^{n}}\end{array}\right.$.

1) Calculate U_{1} and U_{2}.
2) Show that the sequence $\left(U_{n}\right)$ is neither arithmetic nor geometric.
3) Calculate $U_{n+1}-U_{n}$. Deduce that the sequence $\left(U_{n}\right)$ is strictly increasing.
4) Consider the sequence $\left(V_{n}\right)$ defined by $V_{n}=U_{n+1}-U_{n}$.
a) Verify that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio r and first term V_{0} are to be determined
b) Express V_{n} in terms of n , then deduce the value of V_{10}.
c) Calculate, in terms of n, the sum $S=V_{0}+V_{1}+V_{2}+\ldots \ldots+V_{n}$.

IV- (3 points)

Consider, in an orthonormal system of axes ($0 ; \vec{i}, \vec{\jmath}$), the circle (C) of equation: $x^{2}+y^{2}-4 x-6 y=0$.

1) Determine the center I and the radius R of the circle (C).
2) Let $B(1,-2)$. Determine the distance $B I$, then deduce the position of point B with respect to (C).
3) Given the line $\left(d_{m}\right): m x-y-m-2=0$, where m is a real parameter.
a) Verify that $\left(\mathrm{d}_{\mathrm{m}}\right)$ passes through B.
b) For which values of m is $\left(\mathrm{d}_{\mathrm{m}}\right)$ tangent to (C)?
c) Deduce the equations of the tangent lines to (C) that pass through B.

V- (5 points)

Remark: The four parts of this question are independent.

1) Calculate, without using the calculator, $\cos \left(\frac{\pi}{12}\right) \sin \left(\frac{5 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right) \cos \left(\frac{5 \pi}{12}\right)$.
2) Show that $\tan (2 x)-\tan (x)=\frac{\tan (x)}{\cos (2 x)}$.
3) Given: $\sin (x)=\frac{\sqrt{5}-1}{4}$, where $0<x<\frac{\pi}{2}$. Calculate, without using the calculator, $\cos (2 x)$, then verify that $\cos (4 x)=\sin (x)$
4) Let $A B C D$ be a direct square of center O. Give a measure of each of the following oriented angles: $(\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}),(\overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{CB}})$, and $(\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{BC}})$.

VI- (2 points)

Let f be a function defined by: $f(x)=\frac{3 x^{2}+a x+b}{x^{2}+1}$, where a and b are two real numbers. Let (C) be the representative curve of f in an orthonormal system ($0 ; \vec{i}, \vec{j}$).
A and B are two points such that $A(0,3)$ and $B(-1,1)$.

1) Write $f^{\prime}(x)$ in terms of a and b.
2) Find the values of a and b, knowing that the straight-line $(A B)$ is tangent to (C) at A such that $A \in(C)$.

VII- (7.5 points)

Let f be a function defined, on \mathbb{R}, by: $f(x)=x^{3}-6 x^{2}+9 x+1$. Let (C) be the representative curve of f in an orthonormal system ($0 ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$).

1) Determine the limits of $f(x)$ at the boundaries of its domain of definition.
2) Set up the table of variations of f.
3) Show that the equation $\mathrm{f}(\mathrm{x})=0$ has a unique root α. Verify that $-0.2<\alpha<-0.1$.
4) Write an equation of (T), the tangent to (C) at the point of abscissa 0 .
5) Prove that (C) has an inflection point I of abscissa 2 . Find the coordinates of I.
6) $\operatorname{Draw}(\mathrm{T})$ and (C).
7) Solve, graphically, the inequality $f(x)>0$.
8) Let $g(x)=f(|x|)$.
a) Verify that g is an even function.
b) Deduce the construction of (G), the representative curve of g, in the same previous system $(0 ; \vec{i}, \vec{\jmath})$.
