IN HIS NAME

The Islamic Institution For Education & Teaching Al-Mahdi Schools		Math Department February 2015
Subject: Mathematics	مال المراجع على من المالية المراجع الم المراجع المراجع	Mark: 30 points
Class: Grade 11 - Scientific	Mid-Year Exam	Duration : 150 minutes

I- (6 points)

Remark: The three parts of this question are independent.

- 1) Determine the derivative function of each of the following functions.
 - **a**) $g(x) = \left(\frac{2x}{x-1}\right)^2$. **b**) $h(x) = \frac{1}{\sqrt{2x-3}}$.

2) Consider the function f defined, on \mathbb{R} , by: $f(x) = \frac{3\cos x - 1}{x^2 + 2}$.

- **a)** Show that: $\frac{-4}{x^2+2} \le f(x) \le \frac{2}{x^2+2}$.
- **b**) Deduce $\lim_{x\to+\infty} f(x)$.

- 3) Given the function f defined, on \mathbb{R} , by: $f(x) = \begin{cases} \frac{x^2 5x + 4}{18x 72} & \text{for } x < 4\\ b 1 & \text{for } x = 4 \end{cases}$, where b is a real number. $\frac{3 \sqrt{x + 5}}{4 x} & \text{for } x > 4 \end{cases}$
 - **a)** Prove that $\lim_{x\to 4^-} f(x) = \lim_{x\to 4^+} f(x) = \frac{1}{6}$.
 - **b**) Find the value of b so that f is continuous at x = 4.

II- (2.5 points)

Consider the second degree equation (E): $x^2 - 2(m-1)x + m^2 + 2 = 0$, where m is a real parameter.

- 1) Determine m so that -3" is a root of the equation (E).
- 2) Determine the set of values of m so that the equation (E) admits two distinct real roots x' and x''.
- 3) Determine the set of values of m if $\frac{m}{x'} + \frac{m}{x''} \ge 0$.

III- (4 points)

Let (U_n) be a sequence defined, for every natural number n, by:

$$\begin{cases} U_0 = I \\ U_{n+1} = U_n + \frac{1}{2^n}. \end{cases}$$

- **1**) Calculate U_1 and U_2 .
- 2) Show that the sequence (U_n) is neither arithmetic nor geometric.
- 3) Calculate $U_{n+1} U_n$. Deduce that the sequence (U_n) is strictly increasing.
- 4) Consider the sequence (V_n) defined by $V_n = U_{n+1} U_n$.
 - a) Verify that (V_n) is a geometric sequence whose common ratio r and first term V_0 are to be determined.
 - **b**) Express V_n in terms of n, then deduce the value of V_{10} .
 - c) Calculate, in terms of n, the sum $S = V_0 + V_1 + V_2 + \dots + V_n$.

IV- (3 points)

Consider, in an orthonormal system of axes (0; \vec{i}, \vec{j}), the circle (C) of equation: $x^2 + y^2 - 4x - 6y = 0$.

- 1) Determine the center I and the radius R of the circle (C).
- 2) Let B(1, -2). Determine the distance BI, then deduce the position of point B with respect to (C).
- 3) Given the line $(d_m): mx y m 2 = 0$, where m is a real parameter.
 - **a**) Verify that (d_m) passes through B.
 - **b**) For which values of m is (d_m) tangent to (C)?
 - c) Deduce the equations of the tangent lines to (C) that pass through B.

V- (5 points)

Remark: The four parts of this question are independent.

- 1) Calculate, without using the calculator, $\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right)$.
- 2) Show that $\tan(2x) \tan(x) = \frac{\tan(x)}{\cos(2x)}$.
- 3) Given: $sin(x) = \frac{\sqrt{5}-1}{4}$, where $0 < x < \frac{\pi}{2}$. Calculate, without using the calculator, cos(2x), then verify that cos(4x) = sin(x)
- 4) Let ABCD be a direct square of center O. Give a measure of each of the following oriented angles: $(\overrightarrow{AB}, \overrightarrow{BC}), (\overrightarrow{AD}, \overrightarrow{CB}), \text{ and } (\overrightarrow{OA}, \overrightarrow{BC}).$

VI- (2 points)

Let f be a function defined by: $f(x) = \frac{3x^2 + ax + b}{x^2 + 1}$, where a and b are two real numbers. Let (C) be the

representative curve of f in an orthonormal system (0; \vec{i}, \vec{j}).

A and B are two points such that A(0, 3) and B(-1, 1).

- 1) Write f'(x) in terms of a and b.
- 2) Find the values of a and b, knowing that the straight-line (AB) is tangent to (C) at A such that $A \in (C)$.

VII- (7.5 points)

Let f be a function defined, on \mathbb{R} , by: $f(x) = x^3 - 6x^2 + 9x + 1$. Let (C) be the representative curve of f in an orthonormal system (0; \vec{i} , \vec{j}).

- 1) Determine the limits of f(x) at the boundaries of its domain of definition.
- 2) Set up the table of variations of f.
- 3) Show that the equation f(x) = 0 has a unique root α . Verify that $-0.2 < \alpha < -0.1$.
- 4) Write an equation of (T), the tangent to (C) at the point of abscissa 0.
- 5) Prove that (C) has an inflection point I of abscissa 2. Find the coordinates of I.
- 6) Draw (T) and (C).
- 7) Solve, graphically, the inequality f(x) > 0.
- 8) Let g(x) = f(|x|).
 - **a**) Verify that g is an even function.
 - **b**) Deduce the construction of (G), the representative curve of g, in the same previous system $(0; \vec{i}, \vec{j})$.

GOOD WORK