IN HIS NAME

The Islamic Institution for Education & Teaching Al-Mahdi Schools

Class: Grade 11 (Scientific)

Name:

Mid-Year Exam

Mathematics Department Scholastic Year: 2015-2016

Date: / 02 / 2016

Duration: 150 minutes

Mark: 40 points

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and

give, with justification, its correct answer.

Questions		Proposed Answers		
		A	В	С
1)	We suppose that the equation: $x^2 - (m^2 + 1)x - m^2 - 5 = 0$ admits, in \mathbb{R} , two distinct roots. The roots	are positive	are negative	have opposite signs
2)	The equation $x^6 - 5x^3 + 4 = 0$ admits, in \mathbb{R} :	2 roots	4 roots	6 roots
3)	$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 - 3x + 1} =$	0	+∞	3
4)	Let f be a function defined by: $f(x) = (m+1)x^2 + 2mx - 3$, where m is a real parameter. $f(1)$ and $f(2)$ have opposite signs when $m \in$	R	$\left]-\frac{1}{8};\frac{2}{3}\right[$	$\left]-\infty;-\frac{1}{8}\right[\cup \left]\frac{2}{3};+\infty\right[$
5)	Let f be a function defined by: $f(x) = \sin^2(x^2)$. Then $f'(x) =$	2x sin(2x²)	2cos(x ²)	4xcos(x ²)

II- (6 points)

- 1) Consider the equation: $x^2 + 2(m + 2)x m = 0$, where m is a real parameter.
 - a) Determine the set of values of m so that the equation admits two real roots x' and x".
 - b) Determine m so that the two roots x' and x" verify the relation: $2x' + 2x'' x'x'' + 8 = m^2$.
- 2) Consider the function f defined by: $f(x) = x \sqrt{x^2 + 2(m+2)x m}$. Determine the set of values of m so that f is defined on \mathbb{R} .

III- (4 points)

Consider the function f defined, on \mathbb{R} , by: $f(x) = \begin{cases} \frac{2x+2}{-x+2} & \text{if } x < 0 \\ x+2-\cos x & \text{if } x \ge 0 \end{cases}$

- 1) Prove, for $x \ge 0$, that : $x+1 \le f(x) \le x+3$ and deduce $\lim_{x \to +\infty} f(x)$.
- 2) Prove that f is continuous at the point with abscissa 0.

IV- (5 points)

Consider the sequence (U_n) defined by: $U_0 = 4$ and $U_{n+1} = -\frac{1}{3}U_n + 4$, where $n \in \mathbb{N}$.

- 1) Calculate U₁ and U₂.
- 2) Verify that (U_n) is neither arithmetic nor geometric.
- 3) Consider the sequence (V_n) defined by: $V_n = U_n 3$ for every $n \in \mathbb{N}$.
 - a) Show that (V_n) is a geometric sequence. Find its common ratio r and first term V_0 .
 - b) Express $\,V_n\,$ in terms of n. Deduce the value of U_n in terms of n.
 - c) Let $S_n = V_0 + V_1 + ... + V_n$ and $T_n = U_0 + U_1 + + U_n$, where $n \in \mathbb{N}$. Express S_n in terms of n, then deduce T_n in terms of n.

V- (3 points)

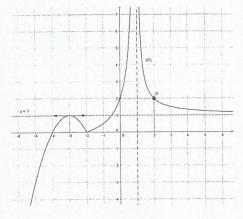
In an orthonormal system (0; \vec{i} , \vec{j}), consider the circle (C) with equation: $x^2 + y^2 - 4x + 2y = 0$.

- 1) Determine the coordinates of the center I of (C) and calculate its radius R.
- 2) a) Verify that the point A(3; 1) is a point on (C).
- b) Write an equation of (T), the tangent to (C) at A. 3) Consider the straight line (d) of equation: y = x + b, where b is a real number. Determine the values of b so that (d) is tangent to (C).

VI- (4 points)

In the adjacent figure, the curve (C) is the representative curve of a function f in an orthonormal system (0; i,j).

- The tangent to (C) at point E(0; 2) cuts x'Ox in (-0.5; 0).
- The tangent (T) to (C) at point D (2; 2) is parallel to the straight-line of equation y = -x.
 - 1) Determine, with justification, f'(-3), f'(2), and f'(0).
 - 2) Study, graphically, the continuity and the differentiability of f at the point with abscissa -2.
 - 3) Write an equation of the tangent (T).
 - 4) Let h be a function defined by: $h(x) = \frac{1}{f(x)}$.
 - a) Determine the domain of definition h.
 - b) Calculate h'(0).



VII- (9 points)

Let f be a function defined, on \mathbb{R} , by: $f(x) = ax^3 + bx - 2$, where a and b are two real numbers.

Designate by (C) its representative curve in an orthonormal system (0; i, j).

Part A

Calculate a and b so that the tangent to (C) at point A (2; -4) is parallel to straight-line (d) of equation: y = -9x.

Part B

Suppose, in this part, that a = -1 and b = 3 ($f(x) = -x^3 + 3x - 2$).

- 1) Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2) Calculate f'(x) and set up the table of variations of f.
 - a) Verify that f could be written in the form $f(x) = (-x 2)(x 1)^2$.
 - b) Calculate the coordinates of the common points between (C) and the axes of coordinates.
- 3) Prove that the point I(0; -2) is a center of symmetry of (C).
- 4) Calculate the coordinates of the common points between (C) and the straight-line (L) of equation y = -x - 2.
- 5) Draw (C) and (L).
- 6) Solve, graphically, the inequality: f(x) > -x 2.

VIII- (5 points)

The three parts of this question are independent.

- 1) Given: $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$. Calculate, without using the calculator, the exact value of $\cos\left(\frac{2\pi}{5}\right)$. 2) a) Prove, for every $x \in \left]0; \frac{\pi}{2}\right[$, that $\tan x = \frac{1-\cos(2x)}{\sin(2x)}$.
- - b) Deduce the exact value of $\tan \left(\frac{\pi}{12}\right)$.
- 3) Prove, for every real number x, that: $\sin\left(\frac{\pi}{3} + x\right) \times \sin\left(\frac{\pi}{3} x\right) = \frac{3}{4} \sin^2 x$.

Good work