The Islamic Institution for Education \& Teaching

Al-Mahdi Schools

Mid-Year Exam

Mathematics Department
Scholastic Year: 2016-2017
Date: / 02 / 2017
Duration: 150 minutes
Mark: 30 points

I- (3 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

Questions			Proposed Answers		
			A	B	C
1)	If g is a function such that: $1-\frac{5}{x} \leq g(x) \leq \frac{4 x+1}{4 x-3}$ then, $\lim _{x \rightarrow+\infty} g(x)=$		1	0	$+\infty$
2)	If $\mathrm{x}^{4}-3 \mathrm{x}^{2}-4=0$, then $\mathrm{x}^{6}-63=$		-62	1	-62 or 1
3)	Let (C) be the representative curve of a function f (T) is a tangent to (C) at $\mathrm{x}=3$. So, $\mathrm{f}(-2)+\mathrm{f}^{\prime}(1)+\mathrm{f}^{\prime}(3)=$		1	3	4
4)	If f is a function defined by: $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x} \text { for } x \neq 0 \\ 0 \text { for } x=0\end{array}\right.$, then f is differentiable on		\mathbb{R}	\mathbb{R}^{*}	$\mathbb{R}-\{1\}$

II- (2 points)

Consider the equation of second degree (E): $2 \mathrm{x}^{2}-5 \mathrm{x}-\mathrm{k}=0$, where k is a real number.

1) For which value of k does the equation (E) admit one double root in \mathbb{R} ?
2) Calculate k so that -1 is a root of (E). Deduce the other root.
3) In this part, let $k=\sqrt{3}$ and let x_{1} and x_{2} be the roots of (E). Without finding x_{1} and x_{2}, form an equation of second degree in y that admits y_{1} and y_{2} as solutions, where $\mathrm{y}_{1}=\frac{x_{1}}{x_{2}}$ and $y_{2}=\frac{x_{2}}{x_{1}}$.

III- (4 points)

Consider the sequence $\left(U_{n}\right)$ defined by: $U_{1}=1$ and $U_{n+1}=\frac{3 n}{n+1} U_{n}$, where $n \in \mathbb{N}^{*}$.

1) Calculate U_{2} and U_{3}.
2) Verify that $\left(U_{n}\right)$ is neither arithmetic nor geometric.
3) Consider the sequence $\left(V_{n}\right)$ defined by: $V_{n}=n U_{n}$, for every $n \in \mathbb{N}^{*}$.
a) Show that $\left(V_{n}\right)$ is a geometric sequence. Find its common ratio r and first term V_{1}.
b) Express V_{n} in terms of n. Deduce the value of U_{n} in terms of n.
c) Let $S_{n}=V_{1}+\ldots+V_{n}$ where $n \in \mathbb{N}^{*}$. Express S_{n} in terms of n.

IV- (4 points)

Remark: The three parts of this question are independent.

1) Given: $a+b=\frac{\pi}{3}$. Prove that: $\frac{\sin a-\sin b}{\cos b-\cos a}=\sqrt{3}$.
2) Knowing that $\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$, write $E=\sin x+\sqrt{3} \cos x$ in the form of $a \sin (b x+c)$, where a, b, and c are three real numbers to be determined.
3) Prove that: $\sin 8 x=8 \sin x \cos x \cos 2 x \cos 4 x$.

V- (4 points)

Remark: The two parts of this question are independent.

1) Find the derivative of the function g defined by: $g(x)=\sqrt{\frac{x^{2}+1}{x-1}}$.
2) Consider the function f defined, on \mathbb{R}, by: $f(x)=\left\{\begin{array}{l}\frac{2-\sqrt{4-x}}{x} \text { for } x<0 \\ \frac{x^{2}-3 x+2}{x^{2}-4} \text { for } 0 \leq x<2 \text {, where a is a real number. } \\ \frac{a x-3}{x+2} \text { for } x \geq 2\end{array}\right.$
a) Is f continuous at $x=0$? Justify your answer.
b) Determine a so that f is continuous at $\mathrm{x}=2$.

VI- (13 points)

The table at right is the table of variations of a function f defined, on \mathbb{R}, by: $f(x)=a x^{3}+b x^{2}+c$, where a, b, and c are three real numbers.

Part A

1) Show that $\mathrm{a}=2, \mathrm{~b}=-3$, and $\mathrm{c}=1$.
2) Calculate $f\left(-\frac{1}{2}\right)$. Deduce the sign of $f(x)$.
3) Write an equation of the tangent (T) to the curve of f at $\mathrm{x}=-\frac{1}{2}$.

Part B

Let F be the function defined by $F(x)=(f(x))^{3}$.

1) Find the domain of definition of F and justify your answer.
2) Find $F^{\prime}(x)$ in terms of $f(x)$ and $f^{\prime}(x)$.
3) Study the variations of F.

Part C

Let g be the function defined, on \mathbb{R}, by: $g(x)=-2 x^{4}+4 x^{3}-4 x$.
Designate by (C) the representative curve of g in an orthonormal system ($0 ; \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{j}}$).

1) Calculate $\lim _{x \rightarrow-\infty} g(x)$ and $\lim _{x \rightarrow+\infty} g(x)$.
2) Verify that $g^{\prime}(x)=-4 f(x)$.
3) Set up the table of variations of g.
4) Show, without using the calculator, that the equation $g(x)=0$ admits two roots. Verify that one of the roots is α such that: $-0.9<\alpha<-0.8$.
5) Prove that g admits two points of inflection whose coordinates are to be determined.
6) Draw (C).
7) Let h be the function defined by: $h(x)=-2 x^{4}+4|x|^{3}-4|x|$
a) Prove that h is an even function.
b) Deduce the construction of (H), the curve of h, then draw (H) in the previous system $(0 ; \vec{i}, \vec{j})$.

GOOD WORK

