IN HIS NAME

The Islamic Institution for
Education \& Teaching
Al-Mahdi Schools

Mathematics Department
Scholastic Year: 2017-2018
Date: / 02 / 2018
Duration: 150 minutes
Mark: 30 points

$$
\begin{aligned}
& \text { ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختز ان المعلومات أو رسم البيانات. } \\
& \text { بستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالثز ام بترتيب المسائل الو اردة في المسابقة). }
\end{aligned}
$$

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

N^{0}	Questions	Proposed Answers		
		A	B	C
1)	$\mathrm{x}^{2}-4 \mathrm{x}+4>0$ for $\mathrm{x} \in$	R]0, + ∞ [$]-\infty, 2[\cup] 2,+\infty[$
2)	$\lim _{x \rightarrow-3} \frac{x^{3}+6 x^{2}+9 x}{(x+3)(x-2)}=$	-3	0	$+\infty$
3)	If f is a function defined by $f(x)=\frac{x^{2}-2 x+3}{x-1}$, then $\mathrm{f}^{\prime}(3)=$	0.5	1	3
4)	$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=$	1	2	0

II- (5 points)

Remark: The three parts of this question are independent.

1) Solve, in \mathbb{R}, the system: $\left\{\begin{array}{r}x^{2}+4 x+3>0 \\ x^{2}+x-2<0\end{array}\right.$.
2)

a) Solve, in \mathbb{R}, the equation $8 x^{4}+2 x^{2}-1=0$.
b) Deduce the solution(s) of the equation $8\left(\frac{1}{1+y}\right)^{2}+\frac{2}{1+y}-1=0$.
3) Let $k(x)=a x^{2}+b x+c$, where a and c are two strictly positive real numbers and b is a strictly negative real number. Suppose that $\mathrm{k}(\mathrm{x})$ has two real roots x_{1} and x_{2}.
a) Let $x_{1}=2$. Find x_{2} in terms of a and b.
b) Study the sign of $\frac{1}{x_{1}}+\frac{1}{x_{2}}$.

III- (5 points)

Let $\left(U_{n}\right)$ be the sequence defined by $U_{0}=3$ and $U_{n+1}=\frac{1}{3} U_{n}-4$, for every $n \in \mathbb{N}$.

1) Calculate U_{1} and U_{2}.
2) Deduce that the sequence $\left(U_{n}\right)$ is neither arithmetic nor geometric.
3) Let $\left(V_{n}\right)$ be the sequence defined by $V_{n}=U_{n}+6$, for every $n \in \mathbb{N}$.
a) Prove that the sequence $\left(V_{n}\right)$ is a geometric sequence whose common ratio and first term are to be determined.
b) Find V_{n} in terms of n, then deduce that $U_{n}=\frac{1}{3^{n-2}}-6$.
4) Prove that the sequence $\left(U_{n}\right)$ is decreasing.
5) Calculate the sum $S=V_{0}+V_{1}+\cdots+V_{n}$ in terms of n.

IV- (5 points)

Remark: The three parts of this question are independent.

1) Let f be a function defined, on \mathbb{R}, by $(\mathrm{x})=\left\{\begin{array}{ll}\frac{\mathrm{x}^{2}-1}{2 \mathrm{x}-2} & \text { if } \mathrm{x}<0 \\ \frac{x^{2}+\mathrm{x}-1}{-2} & \text { if } \mathrm{x} \geq 0\end{array}\right.$.

Study the differentiability of f at $\mathrm{x}=0$.
2) Given $0<x<\frac{\pi}{2}$ and $-\frac{\pi}{2}<y<0$ such that $\tan x=2$ and $\tan y=\frac{8-5 \sqrt{3}}{11}$.
a) Knowing that $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$, verify that $\tan (x+y)=\sqrt{3}$.
b) Deduce the value of $x+y$.
3) Let $\mathrm{a} \in \mathbb{R}$ such that $\sin a+\cos a=\frac{7}{5}$.
a) Show that $\sin a \times \cos a=\frac{12}{25}$.
b) Calculate sina and cosa, knowing that sina $>\cos a$.

V- (8 points)

Consider the function f defined, on \mathbb{R}, by: $\mathrm{f}(\mathrm{x})=-2 \mathrm{x}^{3}-3 \mathrm{x}^{2}+4$.
Designate by (C) the representative curve of f in an orthonormal system ($0 ; \overrightarrow{1}, \vec{\jmath}$).

1) Calculate $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow+\infty} f(x)$.
2) Calculate $f^{\prime}(x)$ and set up the table of variations of f.
3) Show that the equation $\mathrm{f}(\mathrm{x})=0$ has a unique root α and show that $\alpha \in] 0.5 ; 1[$.
4)

a) Show that $\mathrm{I}(-0.5 ; 3.5)$ is a center of symmetry of (C).
b) Write an equation of the line (T), the tangent to (C) at I.
5) Draw (C) and (T).
6) Study graphically, in terms of α, the sign of $f(x)$.
7) Find, graphically, the number of roots of the equation $-2 x^{3}-3 x^{2}+0.999=0$. Justify your answer.
8) Consider the function h defined, on \mathbb{R}, by: $\mathrm{h}(\mathrm{x})=[\mathrm{f}(\mathrm{x})]^{2}$.
a) Determine the limits of h at $-\infty$ and at $+\infty$.
b) Determine $\mathrm{h}^{\prime}(\mathrm{x})$, then complete the following table of variations.

x	$-\infty$	-1	0	α	$+\infty$
$\mathrm{h}^{\prime}(\mathrm{x})$			0	+	
$\mathrm{h}(\mathrm{x})$			9		

VI- (3 points)

Let $A B C$ be a right isosceles triangle such that $A B=A C=1 \mathrm{~cm}$.
(Δ) is a line perpendicular to plane (ABC) at A and S is a point on (Δ) such that $S A=A B$.

1) Show that the line $(A B)$ is perpendicular to plane (SAC).
2) Let H be the midpoint of segment [SC].
a) Show that the plane (ABH) is the mediator plane of segment [SC].
b) Prove that the two planes (SBC) and (ABH) are perpendicular.

