IN HIS NAME

The Islamic Institution for Education & Teaching Al-Mahdi Schools

Mathematics Department Scholastic Year: 2019-2020 Date: January 2020 Duration: 150 minutes Mark: 30 points

≻B

D

Class: Grade 11 (Scientific) Name:

Mid-Year Exam

ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, **with justification**, its correct answer.

NIO	Questions	Proposed Answers		
14		Α	В	С
1)	If f is a function defined by $\frac{x^2 - 3x + 2}{4x^2 - x + 7} < f(x) < -\frac{6 - 3x^2}{12x^2 - 5}, \text{ then } \lim_{x \to +\infty} f(x)$	equal to 4	doesn't exist	equal to $\frac{1}{4}$
2)	Consider the sequence (U_n) defined by: $U_0 = -1$ and $U_{n+1} = \frac{nU_n+4}{n+1}$ for all $n \in \mathbb{N}$. The sequence (V_n) defined by $V_n = n.U_n$ is an arithmetic sequence of common difference $d =$	- 4	1	4
3)	$\lim_{x \to 2} \frac{\sqrt{2x^2 + 1} - 3}{x^2 - 2x} =$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{4}{9}$
4)	$\frac{2x^2 - 3x + 1}{-x + 3} > 0 \text{ for } x \in$] $\frac{1}{2}$;1[U]3;+∞[]- $\infty;\frac{1}{2}[U]1;3[$]- ∞ ;-3[U] $\frac{1}{2}$;1[

II- (3 points)

Consider the equation (E): $x^2 - 9x + 20 = 0$. Let x_1 and x_2 be the roots of (E). Answer the following questions **without calculating** x_1 and x_2 .

- 1) Evaluate $(x_1 3)(x_2 3)$. Deduce that the value of $\frac{1}{x_1 3} + \frac{1}{x_2 3}$ is $\frac{3}{2}$.
- 2) Write a second degree equation in z, such that its roots are $z_1 = \frac{1}{r_1 3}$ and $z_2 = \frac{1}{r_2 3}$.
- 3) ABC is a right triangle at A such that $AB = \frac{x_1^2 + 1}{x_1 3}$ and $AC = \frac{x_2^2 + 1}{x_2 3}$. Calculate the area of triangle ABC.

III- (4 points)

Remark: The three parts of this question are independent.

- 1) Given that $\cos x = -\frac{1}{3}$ and $\sin y = -\frac{\sqrt{5}}{3}$ such that $x \in \left[\frac{\pi}{2}, \pi\right]$ and $y \in \left[-\pi, -\frac{\pi}{2}\right]$. Prove that $\cos 2x = -\frac{7}{9}$ and $\cos 2y = -\frac{1}{9}$.
- 2) Given that $\frac{\pi}{2} < a < \pi$ and $-\frac{\pi}{2} < b < 0$ such that $\tan a = -\frac{4}{3}$ and $\tan b = -7$. Verify that $\tan(a + b) = 1$ then deduce the value of a + b.
- 3) ABC and ADB are two direct right triangles at A and D respectively such that $(\overrightarrow{BC}; \overrightarrow{BA}) = \frac{\pi}{6}(2\pi)$ and $(\overrightarrow{BA}; \overrightarrow{BD}) = 2\frac{\pi}{9}(2\pi)$. Determine the measure of the angles $(\overrightarrow{AB}; \overrightarrow{BC}), (\overrightarrow{BA}; \overrightarrow{CA}), \text{ and } (\overrightarrow{AD}; \overrightarrow{BC})$.

IV- (3 points)

Remark: The two parts of this question are independent.

- 1) Let *f* be a function defined by $f(x) = \begin{cases} \frac{1}{2}x^2 2 & \text{if } x < 4 \\ ax + b & \text{if } x \ge 4 \end{cases}$ where a and b are two real numbers.
 - Find **a** and **b** such that f is continuous and differentiable at x = 4.
- **2**) Find the derivative f'(x) in each of the following cases.

a)
$$f(x) = \left(\frac{x-1}{3x+2}\right)^4$$
 b) $f(x) = \sqrt{-x + \sin(3x)}$.

V- (4 points)

Consider the sequence (U_n) defined by: $U_0 = -1$ and $U_{n+1} = 1 - 2U_n$ for all $n \in \mathbb{N}$.

- 1) Calculate U_1 and U_2 . Deduce that the sequence (U_n) is neither arithmetic nor geometric.
- 2) Consider the sequence (V_n) defined by $V_n = -3U_n + 1$ for all $n \in \mathbb{N}$.
 - **a**) Show that (V_n) is a geometric sequence whose common ratio **r** and its first term V_0 are to be determined
 - **b**) Express V_n in terms of n.

c) Verify that
$$U_n = -\frac{1}{2}V_n + \frac{1}{2}$$
 then deduce U_n in terms of n.

d) Let $S = V_0 + \ldots + V_n$ and $S' = U_0 + \ldots + U_n$. Express S in terms of n then deduce that $S' = -\frac{4}{9}(1-(-2)^{n+1}) + \frac{1}{3}(n+1)$.

VI- (5 points)

In the adjacent figure, we have:

- (C) is the representative curve of a function f defined on \mathbb{R} .
- (D) is the straight line of equation y = x + 3.
- 1) Determine the values of f(0), f(-1) and f'(-2).
- 2) Determine the limits of f at $-\infty$ and $+\infty$.
- **3**) Is f differentiable at -1? Justify.
- 4) Solve graphically the following inequalities:

a)
$$f(x) < 0$$
. **b**) $f(x) - x - 3 > 0$.

5) Reproduce then complete the following table of variations of f:

x	<i>−∞</i> −2	-1	$+\infty$
f'(x)	0		
f(x)		0	

VII- (7 points)

Consider the function g defined on \mathbb{R} , by $g(x) = x^4 - 2x^3 + 2x$.

Let (G) be the representative curve of g in an orthonormal system $(0; \vec{1}, \vec{j})$.

- **1**) Calculate $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to +\infty} g(x)$.
- 2) Verify that $g'(x) = (x 1)^2(4x + 2)$ and deduce that g is strictly increasing over]-0.5; $+\infty$ [.
- **3**) Set up the table of variations of g.
- 4) a) Show that g(x) = 0, has over ℝ, only two roots, one of them is 0 and the other is a real number α.
 b) Verify that α ∈] 0.84; -0.83[.
- 5) Prove that (G) has two points of inflection whose coordinates are to be determined.
- 6) Write the equation of the tangent (t) to (G) at its point of abscissa 1.
- **7**) Draw (t) and (G).