IN HIS NAME

The Islamic Institution for Education \& Teaching

Al-Mahdi Schools

Mathematics Department
Scholastic Year: 2019-2020
Date: January 2020
Duration: 150 minutes
Class: Grade 11 (Scientific)
Mark: 30 points
Name:
Mid-Year Exam
ملاحظة: يسمح باستخدام آلة حاسبة غير قابلة للبرمجة أو اختزا ان المعلومات أو رسم البيانات
يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتز ام بترتيب اللسائل الواردة في المسابقة).

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

\mathbf{N}^{0}	Questions	Proposed Answers		
		A	B	C
1)	If f is a function defined by $\frac{x^{2}-3 x+2}{4 x^{2}-x+7}<f(x)<-\frac{6-3 \mathrm{x}^{2}}{12 \mathrm{x}^{2}-5}$, then $\lim _{x \rightarrow+\infty} f(x)$	equal to 4	doesn't exist	equal to $\frac{1}{4}$
2)	Consider the sequence (U_{n}) defined by: $\mathrm{U}_{0}=-1$ and $\mathrm{U}_{\mathrm{n}+1}=\frac{\mathrm{n} \mathrm{U}_{\mathrm{n}}+4}{\mathrm{n}+1}$ for all $\mathrm{n} \in \mathbb{N}$. The sequence $\left(V_{n}\right)$ defined by $V_{n}=n . U_{n}$ is an arithmetic sequence of common difference $\mathrm{d}=$	-4	1	4
3)	$\lim _{x \rightarrow 2} \frac{\sqrt{2 x^{2}+1}-3}{x^{2}-2 x}=$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{4}{9}$
4)	$\frac{2 x^{2}-3 x+1}{-x+3}>0$ for $x \in$	$] \frac{1}{2} ; 1[U] 3 ;+\infty[$	$]-\infty ; \frac{1}{2}[U] 1 ; 3[$]- - ;-3[U] $\frac{1}{2} ; 1[$

II- (3 points)

Consider the equation (E): $x^{2}-9 x+20=0$. Let x_{1} and x_{2} be the roots of (E).
Answer the following questions without calculating \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.

1) Evaluate $\left(x_{1}-3\right)\left(x_{2}-3\right)$. Deduce that the value of $\frac{1}{x_{1}-3}+\frac{1}{x_{2}-3}$ is $\frac{3}{2}$.
2) Write a second degree equation in z , such that its roots are $\mathrm{z}_{1}=\frac{1}{x_{1}-3}$ and $\mathrm{z}_{2}=\frac{1}{x_{2}-3}$.
3) ABC is a right triangle at A such that $\mathrm{AB}=\frac{\mathrm{x}_{1}^{2}+1}{x_{1}-3}$ and $\mathrm{AC}=\frac{x_{2}^{2}+1}{x_{2}-3}$.

Calculate the area of triangle ABC .

III- (4 points)

Remark: The three parts of this question are independent.

1) Given that $\cos x=-\frac{1}{3}$ and $\sin y=-\frac{\sqrt{5}}{3}$ such that $x \in\left[\frac{\pi}{2}, \pi\right]$ and $\left.y \in\right]-\pi,-\frac{\pi}{2}[$.

Prove that $\cos 2 x=-\frac{7}{9}$ and $\cos 2 y=-\frac{1}{9}$.
2) Given that $\frac{\pi}{2}<\mathrm{a}<\pi$ and $-\frac{\pi}{2}<\mathrm{b}<0$ such that $\tan \mathrm{a}=-\frac{4}{3}$ and $\tan \mathrm{b}=-7$. Verify that $\tan (a+b)=1$ then deduce the value of $a+b$.
3) $A B C$ and $A D B$ are two direct right triangles at A and D respectively such that $(\overrightarrow{\mathrm{BC}} ; \overrightarrow{\mathrm{BA}})=\frac{\pi}{6}(2 \pi)$ and $(\overrightarrow{\mathrm{BA}} ; \overrightarrow{\mathrm{BD}})=2 \frac{\pi}{9}(2 \pi)$.
Determine the measure of the angles $(\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{BC}}),(\overrightarrow{\mathrm{BA}} ; \overrightarrow{\mathrm{CA}})$, and $(\overrightarrow{\mathrm{AD}} ; \overrightarrow{\mathrm{BC}})$.

IV- (3 points)

Remark: The two parts of this question are independent.

1) Let f be a function defined by $f(x)=\left\{\begin{array}{ll}\frac{1}{2} x^{2}-2 & \text { if } x<4 \\ \mathrm{a} x+\mathrm{b} & \text { if } x \geq 4\end{array}\right.$ where a and b are two real numbers.

Find \mathbf{a} and \mathbf{b} such that f is continuous and differentiable at $\boldsymbol{x}=4$.
2) Find the derivative $f^{\prime}(x)$ in each of the following cases.
a) $f(x)=\left(\frac{x-1}{3 x+2}\right)^{4}$
b) $f(x)=\sqrt{-x+\sin (3 x)}$.

V- (4 points)

Consider the sequence $\left(U_{n}\right)$ defined by: $U_{0}=-1$ and $U_{n+1}=1-2 U_{n}$ for all $n \in \mathbb{N}$.

1) Calculate U_{1} and U_{2}. Deduce that the sequence $\left(U_{n}\right)$ is neither arithmetic nor geometric.
2) Consider the sequence $\left(V_{n}\right)$ defined by $V_{n}=-3 U_{n}+1$ for all $n \in \mathbb{N}$.
a) Show that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio \mathbf{r} and its first term $\mathbf{V}_{\mathbf{0}}$ are to be determined
b) Express V_{n} in terms of n.
c) Verify that $U_{n}=-\frac{1}{3} V_{n}+\frac{1}{3}$ then deduce U_{n} in terms of n.
d) Let $S=V_{0}+\ldots+V_{n}$ and $S^{\prime}=U_{0}+\ldots+U_{n}$.

Express S in terms of n then deduce that $S^{\prime}=-\frac{4}{9}\left(1-(-2)^{n+1}\right)+\frac{1}{3}(n+1)$.

VI- (5 points)

In the adjacent figure, we have:

- (C) is the representative curve of a function f defined on \mathbb{R}.
- (D) is the straight line of equation $y=x+3$.

1) Determine the values of $f(0), f(-1)$ and $f^{\prime}(-2)$.
2) Determine the limits of f at $-\infty$ and $+\infty$.
3) Is f differentiable at -1 ? Justify.
4) Solve graphically the following inequalities:
a) $f(x)<0$.
b) $f(\mathrm{x})-x-3>0$.
5) Reproduce then complete the following table of variations of f :

x	$-\infty$	-2	-1		$+\infty$
$f^{\prime}(x)$	0				
$f(x)$	0				

VII- (7 points)

Consider the function g defined on \mathbb{R}, by $\mathrm{g}(x)=x^{4}-2 x^{3}+2 x$.
Let (G) be the representative curve of g in an orthonormal system ($0 ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) Calculate $\lim _{x \rightarrow-\infty} \mathrm{g}(x)$ and $\lim _{x \rightarrow+\infty} \mathrm{g}(x)$.
2) Verify that $\mathrm{g}^{\prime}(x)=(x-1)^{2}(4 x+2)$ and deduce that g is strictly increasing over $]-0.5 ;+\infty[$.
3) Set up the table of variations of g.
4) a) Show that $\mathrm{g}(x)=0$, has over \mathbb{R}, only two roots, one of them is 0 and the other is a real number α.
b) Verify that $\alpha \in]-0.84 ;-0.83[$.
5) Prove that (G) has two points of inflection whose coordinates are to be determined.
6) Write the equation of the tangent (t) to (G) at its point of abscissa 1 .
7) Draw (t) and (G).
