	In His Name	
El-Mahdi Schools		Mathematics Department
Grade 10 (S)	Midyear common exam (07 – 08)	Duration: 150 minutes

The plane, when needed, is referred to an orthonormal system $(O; \vec{i}; \vec{j})$

I- (4 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question and give, with justification, the answer corresponding to it.

No	Questions	Answers		
<u> 110</u>	Questions	Α	В	С
1°	If $\overrightarrow{AB} = \overrightarrow{CA}$, then	ABC is an isosceles triangle	A,B, and C are collinear	(AB) and (BC) are parallel
2°	The direction vector \vec{R} of (d): $3x - y + 5 = 0$ is	\vec{R} (3, -1)	<i>R</i> (1,-3)	<i>R</i> (1,3)
3°	Given: (D) : $\begin{cases} x = 2t - 1 \\ y = 3 - 5t \end{cases}$ The director coefficient of (D) is:	$\frac{2}{3}$	$\frac{-5}{2}$	$\frac{-1}{3}$
4 ^o	$\cos^2 180^\circ + \sin^2 179^\circ$ is	Less than 1	Greater than 1	1

II- (3.5 points)

Given: $E = \{x \in IN^* | x < 10\}$, $A = \{1,2,3,4\}$, $B = \{2,3,5,7\}$ and $\overline{C} = \{2,5,6,9\}$, where C is a subset of E.

- 1) Write B in comprehension and C in extension.
- 2) **Determine**, in extension, $A \cap C$ and $\overline{B \cup C}$.
- 3) How many 3-different-digit numbers can we form using the elements of E?

III- (3 points)

Given the two straight-lines (D) and (D'):

(D):
$$2x - y - 4 = 0$$
 and (D'):
$$\begin{cases} x = 1 - t \\ y = 3t + 1 \end{cases}$$

- 1) **Prove** that (D) and (D') are concurrent; **find** the coordinates of their point of intersection.
- 2) **Find** a cartesian equation of the straight-line that passes through A (1; -2) and parallel to (D').

IV- (4.5 points)

1) Simplify:
$$A = \cos(3\pi + x) + \cos\left(\frac{5\pi}{2} - x\right) + \sin\left(\frac{3\pi}{2} - x\right) + \sin(-4\pi - x).$$

2) Show that: $\frac{\sin^2 x + \sin x \cos x}{\sin^2 x - \cos^2 x} = \frac{\tan x}{\tan x - 1}$
3) Prove that: $\sin^2 22^\circ + \cos^2 20^\circ + \sin^2 68^\circ + \cos^2 70^\circ = 2$

V- (5 points)

1) Solve in IR:
$$\begin{cases} \frac{x+1}{3} - \frac{x-1}{4} > \frac{x}{2} - \frac{2}{3} \\ \frac{(x-2)^2 - (2x-1)^2}{x-2} \le 0 \end{cases}$$

2) Solve, graphically:
$$\begin{cases} x - y - 1 < 0 \\ 2x + y + 2 \le 0 \end{cases}$$

VI- (5 points)

Consider the points A (-3; 2), B (-1; 1), and C (5; 2).

- 1) **Express** \overrightarrow{AB} in terms of \vec{i} and \vec{j} .
- 2) Let D be the point in the plane such that ABCD is a parallelogram of center I. **Calculate** the coordinates of D and I.
- 3) Let $\vec{U}(9; -0.5)$ and $\vec{V} = \vec{AB} + 2\vec{AC}$ be two vectors in the plane.
 - a) **Calculate** the coordinates of \vec{V} .
 - b) Show that \vec{U} and \vec{V} have the same direction.

VII- (5 points)

Let A, B, C, and D be four given points in the plane and let E be the point defined by:

 $\overrightarrow{\text{EA}} + \overrightarrow{\text{EB}} + \overrightarrow{\text{EC}} + \overrightarrow{\text{ED}} = \overrightarrow{0}$

- 1) **Prove** that, for every point O in the plane, $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OE}$
- 2) Let G be the point defined by: $3\overrightarrow{OG} = \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$. **Prove** that G is the center of gravity of triangle BCD.
- 3) Show that A, E, and G are collinear and precise the position of E.

Good Work