In His Name

Al-Mahdi school

Grade: 10

Math Department
 Duration : 150 min

The plane, when needed, is referred to an orthonormal system $(\mathrm{O} ; \vec{i} ; \vec{j})$
Question I: (4 points)
In the table below, only one of the proposed answers to each question is correct, write down the number of each question and give, with justification, the answer corresponding to it.

№	Questions	Proposed answers			
		The principal determination of the angle $\alpha=\frac{23 \pi}{4}$ is :		$\frac{\pi}{4}$	$-\frac{\pi}{4}$

Question II: (3.5 points)

Let $E=\{m, a, t, h, s\} ; \mathrm{A}=\{\mathrm{m}, \mathrm{h}, \mathrm{s}\}$ and $B=\{s\}$ are two subsets of E.

1) Find $A \cap \bar{B}$.
2) How many $\mathbf{3}$ letter words can we form from the elements of E if:
a- The letters are different.
b- Even word starts with the letter "a", repetition is not allowed.
(Remark: a world could not have meaning)

Question III: (5 points)

Remark: All parts of this problem are independent.

1) Knowing that: $\tan x=\frac{3}{4}$ and $\pi<x<\frac{3 \pi}{2}$.

Prove that $E=5 \sin x-9 \cot x$ is an integer.
2) Simplify: $A=\sin \left(\frac{9 \pi}{2}-x\right)-\cos (6 \pi-x)+\tan \frac{\pi}{4} \sin \left(\frac{-5 \pi}{4}\right)$.
3) Prove that: $\frac{1}{1-\sin x}+\frac{1}{1+\sin x}=2+2 \tan ^{2} x$.

Question IV: (5 points)
Remark: The two parts of this problem are independent.

1) Solve in $\mathbf{R}:\left\{\begin{array}{l}\frac{x^{4}+1}{-3 x+2} \\ 9(x-1)^{2} \leq(2 x+1)^{2}\end{array}\right.$
2) Consider the straight lines $(d): x+y-1=0$ and (d^{\prime}) : $x-y+3=0$.
a- Trace (d) and (d').
b- Place, on the figure the points $A(-1,2), B(-3,0)$ and $C(1,0)$.
c- Form the system of inequalities, whose solution is the region inside triangle ABC .

Question V: (3.5 points)

Consider the two straight line: $\left(D_{1}\right):\left\{\begin{array}{l}x=2 t+1 \\ y=-t+3\end{array}\right.$ and $\left(D_{2}\right): 3 x+y-1=0$.

1) Write a Cartesian equation of the line $\left(D_{I}\right)$.
2) Write a system of parametric equations of the straight line passing through $A(1 ; 2)$ and parallel to $\left(D_{2}\right)$.
3) Let the straight line $\left(D_{m}\right):(m-1) x+(2 m-1) y+3=0$.

Determine the value of m such that $\left(D_{m}\right)$ and $\left(D_{2}\right)$ are parallel.

Question VI: (4 points)

ABC is a triangle. The points P, Q and G are defined by:
$\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0} ; 3 \overrightarrow{Q A}+2 \overrightarrow{Q C}=\overrightarrow{0} ;-\overrightarrow{G A}+2 \overrightarrow{G B}+3 \overrightarrow{G C}=\overrightarrow{0}$.

1) Prove that $\overrightarrow{P C}=\frac{1}{3} \overrightarrow{B C} \quad ; \overrightarrow{A Q}=\frac{2}{5} \overrightarrow{A C}$.
2) Construct P and Q.
3) Let M and M^{\prime} be two points of plane defined by: $\overrightarrow{M M^{\prime}}=-\overrightarrow{M A}+2 \overrightarrow{M B}+3 \overrightarrow{M C}$.

Prove that G, M and M^{\prime} are collinear.

Question VII: (5 points)

ADCB is a square. Designate by I the midpoint of $[\mathrm{AB}]$ and by E the point defined by: $\overrightarrow{I E}=\frac{1}{3} \overrightarrow{I D}$.
Consider the system $(B ; \overrightarrow{B C} ; \overrightarrow{B A})$ of the plane.

1) Find the coordinates of the points A, B, C, D and I.
2) Show that the coordinates of E are $\left(\frac{1}{3} ; \frac{2}{3}\right)$.
3) Verify that E is the center of gravity of the triangle ABD.

4) Prove that A, E and C are collinear.

Good Work

