Math Department February 2010

Subject: Mathematics

Education & Teaching

Al-Mahdi Schools

The Islamic Institution For

Print Print Content

Duration: 150 minutes

I. (1.5 pts)

Grade 11 S

Each of the following questions has exactly one correct answer. Write down the number of the question then indicate, with justification, the correct answer.

Questions	Answers		
	А	В	С
1) If $x \in [-1;0[then$	$x^3 \le x \le x^2$	$x \le x^3 \le x^2$	$x \le x^2 \le x^3$
2) If $y = x - \frac{\pi}{2}$ then	$\sin x = -\cos y$	$\sin x = \sin y$	$\sin^2 x + \sin^2 y = 1$
3) Given \vec{u} (5;-4) and \vec{v} (-4;5)	$-\vec{i}-\vec{j}$	$9(\vec{i}-\vec{j})$	$-9\dot{i}+9\dot{j}$
then $u - v =$			
4) $2x-1=m$ has a solution in Z if	<i>m</i> is even	<i>m</i> is odd	$m \in N$

II. (3.5 pts)

1. Solve the following system of inequations and represent the solution using axis: $(-(-1)^2 - 1)^2$

$$\begin{cases} \frac{(x-1)^2 - 16}{(-x+1)(x^2+2)} > 0\\ \frac{x+1}{6} - \frac{x-1}{4} \ge \frac{x}{2} - \frac{1}{6} \end{cases}$$

2. Given the two strictly positive real numbers *x* and *y*.

Show that $\frac{x+y}{2} \ge \sqrt{xy}$.

III. <u>(1 pts)</u>

Given the two intervals $A = -\infty; -2$ and B = [-3; 3]

1) Find $A \cap B$ and $A \cup B$.

2) Write in interval form: \overline{A} and \overline{B} , then deduce $\overline{A} \cap \overline{B}$.

IV. (3 pts)

(The 2 parts of this question are independent)

1) Given:
$$\cos x = \frac{-\sqrt{5}}{3}$$
 and $\frac{\pi}{2} < x < \pi$.
a) Show that $3\sin x + \sqrt{5}\tan x = 0$.
b) Find the value of: $\sin\left(\frac{11\pi}{2} - x\right) + \cos(-9\pi + x) + \tan\left(\frac{3\pi}{2} - x\right)$.
2) Show that: $(1 + \cos^2 x)\tan^2 x - \frac{1}{\cos^2 x} = -\cos^2 x$.

V. <u>(4 pts)</u>

Given the 2 lines $(D_1): 3x + 2y - 1 = 0$ and $(D_2): \begin{cases} x = -k+1 \\ y = -2k+3 \end{cases}$ and the two points A(1; 2) and

B(2m-1;4).

1) Give a direction vector \vec{R}_1 and \vec{R}_2 of (D_1) and (D_2) respectively.

a) Calculate m if $(AB)//(D_2)$

- 2) Write (D_2) in its cartesian form.
- 3) Prove that (D_1) and (D_2) are intersecting then find the coordinates of their point of intersection I.
- 4) Plot (D_1) & (D_2) in an orthonormal system (O, \vec{i}, \vec{j})
- 5) The line parallel to *y*-axis and passing through the point M(1, 0) cuts $(D_1) \& (D_2)$ in *E* and *F* respectively. Determine a system of inequations having its solution represented by the region inside the triangle *IEF*.

VI. <u>(1.5 pts)</u>

In a system (O, \vec{i}, \vec{j}) given the points A(-3;0);B(5;4); C(10;0) and D(2;-4)

- 1) Show that *ABCD* is a parallelogram.
- 2) Let N(x; y) be a point such that : xy 2x 2y + 1 = 0Suppose that *X* and *Y* are the coordinates of *N* in the new system which is the image of (O; \vec{i}, \vec{j}) by the translation of the vector $\overrightarrow{OO'} = 2\vec{i} + 2\vec{j}$. Show that XY = 3.

VII. (3.5 pts)

Given a triangle ABC and let D be a point defined by $\overrightarrow{DA} + 3\overrightarrow{DB} + 2\overrightarrow{DC} = \vec{0}$.

- 1) Show that $\overrightarrow{BD} = \frac{1}{6} \left(\overrightarrow{BA} + 2\overrightarrow{BC} \right)$.
- 2) Let *M* be a point in the plane of this triangle, suppose that: $\vec{v} = \vec{MA} - 3\vec{MB} + 2\vec{MC}$. Show that $\vec{v} = \vec{BA} + 2\vec{BC}$.
- 3) Show that the points *B*, *D* and *E* are collinear, where *E* is defined by $\overrightarrow{BE} = \overrightarrow{v}$.
- 4) Draw the figure and plot the points *E* and *D*.
- 5) Let *F* be a point defined by $\overrightarrow{CF} = \frac{1}{3}\overrightarrow{CA}$. Show that *D* is the midpoint of [*BF*].

VIII. <u>(2 pts)</u>

Consider the isosceles triangle *ABC* such that AB = AC = a and

 $B\hat{A}C = 2\alpha$, where $\alpha \in \left[0, \frac{\pi}{4}\right]$. Let [AI] be the median segment

relative to [BC] and let [CJ] be the height issued from C.

- 1) Calculate *BI* in terms of a and $\sin \alpha$.
- 2) Deduce that $BC = 2a \sin \alpha$.
- 3) Let *S* be the area of triangle *ABC* .Show that:
 - a) $S = a^2 \sin \alpha \cos \alpha$

b)
$$S = \frac{1}{2}a^2 \sin 2\alpha$$

4) Deduce that $\sin 2\alpha = 2 \sin \alpha \cos \alpha$.

