In his name

The Islamic Institution
For Education \& Teaching
Al-Mahdi Schools
Subject: Mathematics
Grade 10

Mid Year Exam

Math Department
February 2013

Duration: 150 minutes

I- (6 points)

In the table below, only one of the proposed answers to each question is correct. Write down the letter corresponding to the proper response, with justification.

		Answers		
\mathbf{N}°	Questions	\mathbf{a}	\mathbf{b}	\mathbf{C}
$\mathbf{1}$	If $\mathbf{x}>\mathbf{2}$ then $\frac{\|\mathrm{x}-2\|}{\mathrm{x}-2}=$	$\frac{\mathrm{x}+2}{\mathrm{x}-2}$	$\mathbf{1}$	$\mathbf{- 1}$
$\mathbf{2}$	$[-3 ; 4[\cap]-1 ; 6]=$	$[-3 ; 6]$	$[-1 ; 4]$	$]-1 ; 4[$
$\mathbf{3}$	$\theta=-\frac{121 \pi}{7} \cdot$ The principal measure of θ is	$\frac{5 \pi}{7} \mathbf{r a d}$	$-\frac{2 \pi}{7}$ rad	$-\frac{\pi}{7}$ rad
$\mathbf{4}$	If $\|-2 x+3\|>5$, then	$\mathbf{x}<\mathbf{- 1}$	$-\mathbf{1}<\mathbf{x}<\mathbf{4}$	$\mathbf{x}<-\mathbf{1}$ or $\mathbf{x}>\mathbf{4}$
$\mathbf{5}$	$\frac{\sqrt[3]{4 \sqrt{2}}}{\sqrt{2}}=$	$\sqrt{2}$	$\sqrt[3]{2}$	$\sqrt[3]{4}$
$\mathbf{6}$	How many 4- digit numbers can be formed from the digits $0,1,2$ and 3 (no digit may be used twice and 0 may not be used as a 1st digit.)	$\mathbf{1 8}$	$\mathbf{2 4}$	$\mathbf{2 7}$

II- (5 points)

Remark: The four parts of this problem are independent.

1) Solve: $|2 x-3|=|x-2|$.
2) Find x so that: $|x|+5>2|x|+3$.
3) Frame $\mathrm{E}=2 x+3$, knowing that $-1 \leq \mathrm{x} \leq 0$.
4) Simplify :
a) $\frac{5 \sqrt{2}+2 \sqrt[4]{4}-4 \sqrt[8]{16}}{\sqrt[6]{81} \times \sqrt[3]{3}}$
b) $\frac{\left(a b^{2}\right)^{2} \times\left(a b^{-1}\right)^{3} \times\left(a^{2} b\right)^{-1}}{\left(a^{2} b^{3}\right)^{-2} \times a^{3} b^{5}}$

III- (3 points)

Consider the three sets E, A, and B defined by:
$E=\{0,1,2,3,4,5,6,7\}, \quad A=\{1,3,7\} \quad B=\{2,4,6\}$, where A and B are two subsets of E.

1) Write in extension sets $\bar{A}, \overline{\bar{A}} \cup \mathrm{~B}$, and $\mathrm{A} \cap \overline{\mathrm{B}}$.
2) Compare the two sets $\overline{\bar{A} \cup B}$ and $A \cap \bar{B}$.

IV- (4 points)

1) Given below the tables of signs of $A(x)$ and $B(x)$ respectively:

x	$-\infty$		2	$+\infty$
$\mathrm{A}(\mathrm{x})$		+	0	-

x	$-\infty$	1	$+\infty$	
$B(x)$		-	0	+

Let $\mathbf{Q}(\mathbf{x})=\mathbf{A}(\mathbf{x}) \times \mathbf{B}(\mathbf{x})$ and $\mathbf{R}(\mathbf{x})=\frac{B(\mathrm{x})}{\mathrm{A}(\mathrm{x})}$
a) Study the signs of $Q(x)$.
b) Solve the inequation: $\mathrm{R}(\mathrm{x}) \leq 0$.
2) Solve the following system of inequalities: $\left\{\begin{array}{l}(-x+1)>0 \\ \frac{x+1}{x-2} \leq 0\end{array}\right.$

V- (7 points)

Remark :The four parts of this problem are independent .

1) Simplify: $A=\cos (x-3 \pi)+3 \sin (-x)+3 \sin (5 \pi-x)+\tan (-7 \pi+x)+\cos \left(-x+\frac{13 \pi}{2}\right)$
2) Calculate, without using the calculator $: B=\sqrt{3} \cos \left(\frac{5 \pi}{6}\right)-\sqrt{2} \sin \left(\frac{5 \pi}{4}\right)+\cos \left(\frac{5 \pi}{3}\right)$
3) Let y be an angle such that : $y \in\left[\frac{\pi}{2} ; \pi\right]$
a) Verify that: $(2 \sin y+3)(2 \sin y-1)=-4 \cos ^{2} y+4 \sin y+1$
b) If $-4 \cos ^{2} y+4 \sin y+1=0$, Find $\sin y$, then deduce the value of $\cos y$ and $\tan y$.
c) Deduce the value of y.

VI- (5 points)

Part A :

ABCD is a square, I is the midpoint of $[\mathrm{AB}]$ and H is a point defined by $\overrightarrow{\mathrm{DH}}=\frac{2}{3} \overrightarrow{D I}$.

1) Express $\overrightarrow{\mathrm{AC}}$ in terms of $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AD}}$.
2) Prove that: $\overrightarrow{\mathrm{AH}}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$.
3) Deduce that A, C and H are collinear.

Part B :

Consider the orthonormal system $(\mathrm{A}, \overrightarrow{A B} ; \overrightarrow{A D})$.

1) Determine the coordinates of the points A, B, C, D and I in the system $(A, \overrightarrow{A B} ; \overrightarrow{A D})$.
2) Knowing that: $\overrightarrow{A H}=k \overrightarrow{A C}$. Calculate in terms of k , the coordinates of point H .
3) Use the collinearity of the points D, H and I to calculate the value of k, and then deduce that the coordinates of the point H are $\left(\frac{1}{3}, \frac{1}{3}\right)$.
4) Let T be the midpoint of $[\mathrm{AD}]$. Prove that the points T, H and B are collinear.
