	In his name	
The Islamic Institution For Education & Teaching Al-Mahdi Schools	Mid Year Exam	Math Department February 2013
Subject: Mathematics		
Grade 10	مالت الاسلى يونية المشيسة م المرابط المسلم	Duration: 150 minutes

I- (6 points)

In the table below, only one of the proposed answers to each question is correct. Write down the letter corresponding to the proper response , **with justification**.

		Answers		
Ň	Questions	a	b	С
1	If x > 2 then $\frac{ x-2 }{x-2} =$	$\frac{x+2}{x-2}$	1	-1
2	$[-3;4[\cap]-1;6]=$	[-3;6]	[-1;4]]-1;4[
3	$\theta = -\frac{121\pi}{7}$. The principal measure of θ is	$\frac{5\pi}{7}$ rad	$-\frac{2\pi}{7}$ rad	$-\frac{\pi}{7}$ rad
4	If $ -2x + 3 > 5$, then	x < -1	-1 < x < 4	x < -1 or x > 4
5	$\frac{\sqrt[3]{4\sqrt{2}}}{\sqrt{2}} =$	$\sqrt{2}$	3√2	3√4
6	How many 4- digit numbers can be formed from the digits 0, 1, 2 and 3 (no digit may be used twice and 0 may not be used as a 1st digit.)	18	24	27

II- (5 points)

Remark: The four parts of this problem are independent.

- 1) Solve: |2x 3| = |x 2|.
- 2) Find *x* so that: |x| + 5 > 2 |x| + 3.
- 3) Frame E = 2x + 3, knowing that $-1 \le x \le 0$.
- 4) Simplify :

a)
$$\frac{5\sqrt{2} + 2\sqrt[4]{4} - 4\sqrt[8]{16}}{\sqrt[6]{81} \times \sqrt[3]{3}}$$
 b)
$$\frac{(ab^2)^2 \times (ab^{-1})^3 \times (a^2b)^{-1}}{(a^2b^3)^{-2} \times a^3b^5}$$

III- (3 points)

Consider the three sets E, A, and B defined by:

 $E = \{0, 1, 2, 3, 4, 5, 6, 7\},$ $A = \{1, 3, 7\}$ $B = \{2, 4, 6\}$, where A and B are two subsets of E.

- 1) Write in extension sets \overline{A} , $\overline{A} \cup B$, and $A \cap \overline{B}$.
- 2) Compare the two sets $\overline{A} \cup B$ and $A \cap \overline{B}$.

IV- (4 points)

1) Given below the tables of signs of A(x) and B(x) respectively:

Let
$$\mathbf{Q}(\mathbf{x}) = \mathbf{A}(\mathbf{x}) \times \mathbf{B}(\mathbf{x})$$
 and $\mathbf{R}(\mathbf{x}) = \frac{B(\mathbf{x})}{\Delta(\mathbf{x})}$

- Study the signs of Q(x). a)
- Solve the inequation: $R(x) \le 0$. b)

2) Solve the following system of inequalities:

$$\begin{array}{c|c} 0 & - \\ \hline \mathbf{x} \end{pmatrix}_{\mathbf{X}} \mathbf{B}(\mathbf{x}) \text{ and } \mathbf{R}(\mathbf{x}) = \frac{B(\mathbf{x})}{A(\mathbf{x})} \end{array}$$

 $-\infty$ 1 $+\infty$ Х _ +0

$$\begin{cases} (-x+1) > 0 \\ \frac{x+1}{x-2} \le 0 \end{cases}$$

V- (7 points)

Remark : The four parts of this problem are independent.

1) Simplify: A=cos (x - 3\pi) + 3sin (-x) + 3sin (5\pi - x) + tan (-7 \pi + x) + cos
$$\left(-x + \frac{13\pi}{2}\right)$$

2) Calculate, without using the calculator: B= $\sqrt{3} \cos\left(\frac{5\pi}{6}\right) - \sqrt{2} \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{3}\right)$
3) Let y be an angle such that : $y \in \left[\frac{\pi}{2}; \pi\right]$

- a) Verify that: $(2\sin y + 3)(2\sin y 1) = -4\cos^2 y + 4\sin y + 1$
- b) If $-4\cos^2 y + 4\sin y + 1 = 0$, Find sin y, then deduce the value of cos y and tan y.
- c) Deduce the value of y.

VI- (5 points)

Part A :

ABCD is a square, I is the midpoint of [AB] and H is a point defined

by
$$\overrightarrow{DH} = \frac{2}{3}\overrightarrow{DI}$$
.

1) Express AC in terms of AB and AD.

2) Prove that:
$$\overrightarrow{AH} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$
.

3) Deduce that A, C and H are collinear. Part B :

Consider the orthonormal system $(A, \overrightarrow{AB}; \overrightarrow{AD})$.

- 1) Determine the coordinates of the points A, B, C, D and I in the system (A, \overrightarrow{AB} ; \overrightarrow{AD}).
- 2) Knowing that: $\overrightarrow{AH} = k\overrightarrow{AC}$. Calculate in terms of k, the coordinates of point H.
- 3) Use the collinearity of the points D, H and I to calculate the value of k, and then deduce that the coordinates of the point H are $\left(\frac{1}{3}, \frac{1}{3}\right)$.
- 4) Let T be the midpoint of [AD]. Prove that the points T, H and B are collinear.

