The Islamic Institution For
Education \& Teaching
Al-Mahdi Schools

Mid Year Exam

Math Department
February 2014

Subject: Mathematics

Class: Grade 10

Duration: 150 minutes

Question I : (4pts)

In the table below, only one of the proposed answers to each question is correct. Write down the letter corresponding to the proper answer, with justification.

n ${ }^{\text {o }}$	Questions	Answers		
		a	b	c
1	If $\left\|x^{2}-5\right\|=-3$ then	No solution for x	$x \in\{2 \sqrt{2},-2 \sqrt{2}\}$	$x \in\{-\sqrt{2}, \sqrt{2}, 2 \sqrt{2},-2 \sqrt{2}\}$
2	If $[-5,1] \cap \mathrm{X}=[-3,1]$, then $\mathrm{X}=$	[-3,3 [] $-3,+\infty$ [] -5, -3]
3	Given: $\sin x=\frac{\sqrt{3}}{3}$. Then $\cos \left(x+\frac{5 \pi}{2}\right)=$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$\sqrt{\frac{2}{3}}$
4	$\text { If } \mathrm{x}<0 \text {, then } \frac{\sqrt[4]{x^{4}}}{\sqrt[3]{x^{3}}}=$	does not exist	-1	1

Question II : (2.5 pts)

Consider the sets: $\mathrm{A}=\left\{x \in \mathrm{Z} /(x-1)\left(x^{2}-16\right)(2 x+1)=0\right\} \quad \& \quad B=\left\{x \in \mathrm{IN} /\left|x-\frac{3}{2}\right|<\frac{5}{2}\right\}$

1) Show that: $\mathrm{A}=\{-4,1,4\}$ and $\mathrm{B}=\{0,1,2,3\}$.
2) Write in extension : $\mathrm{A} \cap B$ and $A \cup B$.
3) Complete by $\in, \notin, \subset, \not \subset$:
i. -4 A
ii. $\{1 ; 4\} \ldots \ldots$ A

Question III : (3pts)

Solve the following system: $\quad\left\{\begin{array}{l}(x+1)\left(x^{2}+1\right)>0 \\ \frac{4 x^{2}-25-3(2 x-5)}{x+4} \leq 0\end{array}\right.$

Question IV : (4.5 pts) (the 2 parts are independent)

1) Given : $3 \leq x \leq 4$ and $-2 \leq y \leq-1$, and $E=\frac{2 x-1}{x^{2}+y^{2}}$. Show that $\frac{1}{4} \leq E \leq \frac{7}{10}$
2) Simplify: a) $\frac{9^{\frac{2}{5}} \times 6^{\frac{3}{5}}}{\sqrt[5]{9} \times \sqrt[5]{2^{3}} \times \sqrt[5]{3^{3}}}$
b) $\sqrt{(\sqrt{7}-3)^{2}}+\sqrt[3]{(2 \sqrt{7}-5)^{3}}-|2-\sqrt{7}|$

Question V : (6.5 pts) (the four parts are independent)

1) Simplify: $\sin (7 \pi-x)-\cos (-9 \pi-x)-\cos \left(\frac{9 \pi}{2}-x\right)+\tan \left(\frac{14 \pi}{2}+x\right)$
2) Show that : $\tan ^{2} x-\sin ^{2} x=\left(\tan ^{2} x\right)\left(\sin ^{2} x\right)$
3) Simplify : $\cos ^{2} 31^{\circ}+\cos ^{2} 59^{\circ}-\cos 120^{\circ}$
4) Given : $(\sin x+\cos x)^{2}=\frac{5}{4}$, where $\mathrm{x} \in\left[\pi, \frac{3 \pi}{2}\right]$
i. Show that : $\sin x \cdot \cos x=\frac{1}{8}$
ii. Calculate $\frac{1}{\sin x}+\frac{1}{\cos x}$

Question VI : (5.5 pts)

In a system $(O ; \vec{i} ; \vec{j})$, consider the points: $A(2 ; 5) \quad ; \quad B(-2 ; 2) ; C(0 ;-4)$.

1) Find the coordinates of the vector $\vec{V}=2 \overrightarrow{A B}-3 \overrightarrow{A C}$.
2) Prove that A, B and C determine a triangle.
3) Let $\mathrm{M}(2 \mathrm{x}+1 ; 2 \mathrm{y}+4)$:
a- Calculate x and y if M is the centroid of the triangle $A B C$.
b- Find a relation between x and y if the vectors $\overrightarrow{\boldsymbol{A M}}$ and $\mathbf{3} \overrightarrow{\boldsymbol{A B}}$ are collinear.
4) Find the coordinates of the point $B(-2 ; 2)$ in the system $(C ; \vec{i} ; \vec{j})$

Question VII : (4 pts)

ABCD is a square. The points I and J are respectively the midpoints of [DC] and [AI].
The point K is defined by: $\overrightarrow{I K}=-\overrightarrow{I B}$

1) Redraw the figure
2) Show that: $\overrightarrow{J K}=-\frac{1}{2} \overrightarrow{I A}-\overrightarrow{I B}$
3) Let L be a point defined by: $2 \overrightarrow{L A}+\overrightarrow{L B}=\overrightarrow{0}$
a) Verify that: $\overrightarrow{A L}=\frac{1}{3} \overrightarrow{A B}$. Construct L .
b) Show that : $\overrightarrow{J L}=\frac{1}{6} \overrightarrow{I A}+\frac{1}{3} \overrightarrow{I B}$

c) Deduce that points K, J, and L are collinear .

GOOD WORK!

