In his name

Mid Year Exam

Math Department

February 2014

Subject: Mathematics

Education & Teaching

Al-Mahdi Schools

The Islamic Institution For

Class: Grade 10

A CONTRACTOR OF CONTRACTOR OF

Duration: 150 minutes

Question I : (4pts)

In the table below, only one of the proposed answers to each question is correct. Write down the letter corresponding to the proper answer, **with justification**.

n ^o	Questions	Answers		
		a	b	с
1	If $ x^2 - 5 = -3$ then	No solution for x	$x \in \left\{ 2\sqrt{2}, -2\sqrt{2} \right\}$	$x \in \{-\sqrt{2}, \sqrt{2}, 2\sqrt{2}, -2\sqrt{2}\}$
2	If $[-5, 1] \cap X = [-3, 1]$, then X=	[-3 ,3 [] -3 ,+ ∞ [] -5, -3]
3	Given: $\sin x = \frac{\sqrt{3}}{3}$. Then $\cos(x + \frac{5\pi}{2}) =$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$\sqrt{\frac{2}{3}}$
4	<i>If</i> x < 0, then $\frac{\sqrt[4]{x^4}}{\sqrt[3]{x^3}} =$	does not exist	-1	1

Question II : (2.5 pts)

Consider the sets: A = { $x \in \mathbb{Z} / (x-1)(x^2-16)(2x+1) = 0$ } & B = { $x \in \mathbb{IN} / \left| x - \frac{3}{2} \right| \langle \frac{5}{2} \rangle$

- 1) Show that : $A = \{-4, 1, 4\}$ and $B = \{0, 1, 2, 3\}$.
- 2) Write in extension : $A \cap B$ and $A \cup B$.
- 3) Complete by $\in, \notin, \subset, \not\subset$:
- i. -4 A ii. $\{1; 4\}$ A.

Question III : (3pts)

Solve the following system:
$$\begin{cases} (x+1)(x^2+1) > 0\\ \frac{4x^2 - 25 - 3(2x-5)}{x+4} \le 0 \end{cases}$$

Question IV : (4.5 pts) (the 2 parts are independent)

1) Given $:3 \le x \le 4$ and $-2 \le y \le -1$, and $E = \frac{2x-1}{x^2 + y^2}$. Show that $\frac{1}{4} \le E \le \frac{7}{10}$

2) Simplify: a)
$$\frac{9^{\frac{2}{5}} \times 6^{\frac{3}{5}}}{\sqrt{9} \times \sqrt[5]{2^3} \times \sqrt[5]{3^3}}}$$

b) $\sqrt{(\sqrt{7}-3)^2} + \sqrt[3]{(2\sqrt{7}-5)^3} - |2-\sqrt{7}|$

Question V : (6.5 pts) (the four parts are independent)

1) Simplify:
$$\sin(7\pi - x) - \cos(-9\pi - x) - \cos\left(\frac{9\pi}{2} - x\right) + \tan(\frac{14\pi}{2} + x)$$

- 2) Show that : $tan^2x sin^2x = (tan^2x)(sin^2x)$
- 3) Simplify $:\cos^2 31^o + \cos^2 59^o \cos 120^o$
- 4) Given $:(\sin x + \cos x)^2 = \frac{5}{4}$, where $x \in [\pi, \frac{3\pi}{2}]$
 - i. Show that : sinx . cosx = $\frac{1}{8}$

ii. Calculate
$$\frac{1}{\sin x} + \frac{1}{\cos x}$$

Question VI : (5.5 pts)

In a system ($O; \vec{i}; \vec{j}$), consider the points: A(2; 5); B(-2; 2); C(0; -4).

- 1) Find the coordinates of the vector $\vec{V} = 2\vec{AB} 3\vec{AC}$.
- 2) Prove that A, B and C determine a triangle.
- 3) Let M(2x+1; 2y+4):
 - a- Calculate x and y if M is the centroid of the triangle ABC.
 - b- Find a relation between x and y if the vectors \overrightarrow{AM} and $\overrightarrow{3AB}$ are collinear.
- 4) Find the coordinates of the point B(-2;2) in the system $(C;\vec{i};\vec{j})$

Question VII : (4 pts)

ABCD is a square. The points I and J are respectively the midpoints of [DC] and [AI].

The point K is defined by: $\overrightarrow{IK} = -\overrightarrow{IB}$

- 1) Redraw the figure
- 2) Show that : $\overrightarrow{JK} = -\frac{1}{2}\overrightarrow{IA} \overrightarrow{IB}$
- 3) Let L be a point defined by: $2\overrightarrow{LA} + \overrightarrow{LB} = \overrightarrow{0}$
 - a) Verify that : $\overrightarrow{AL} = \frac{1}{3}\overrightarrow{AB}$. Construct L.
 - b) Show that : $\overrightarrow{JL} = \frac{1}{6}\overrightarrow{IA} + \frac{1}{3}\overrightarrow{IB}$
 - c) Deduce that points K, J, and L are collinear.

