IN HIS NAME

The Islamic Institution For
Education \& Teaching
Al-Mahdi Schools

Math Department
February 2015
Mark: 50 points
Duration: 150 minutes

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

Questions		Proposed Answers		
	A	B	C	
1)	The principal measure of $\frac{-33 \pi}{6}$ is	$\frac{\pi}{2}$	$\frac{-3 \pi}{2}$	$\frac{\pi}{6}$
	$\sqrt[3]{-54}-\sqrt[3]{250}+5 \sqrt[3]{16}=$	$7 \sqrt[3]{2}$	$\sqrt[3]{2}$	$2 \sqrt[3]{2}$
3)	If $-3<x<2$, then	$x^{2} \in[0,9[$	$x^{2} \in[4,9]$	$\left.x^{2} \in\right] 4,9[$
4)	If $\overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{CD}}-\overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{DA}}-\overrightarrow{\mathrm{BE}}$ then $\overrightarrow{\mathrm{u}}=$	$\overrightarrow{\mathrm{AB}}$	$\overrightarrow{\mathrm{CB}}$	$\overrightarrow{0}$

II- (6 points)

Simplify each of the following expressions.

1) $\mathrm{A}=\frac{6 \times 2^{-4}+3 \times 2^{-3}}{3 \times 2^{-2}-2^{-3}}$.
2) $\mathrm{B}=\frac{\sqrt[5]{9} \times(\sqrt[5]{\sqrt[3]{9}})^{2} \times \sqrt{27}}{\sqrt[6]{3}}$.
3) $\mathrm{C}=\frac{3^{\mathrm{n}+4}-2 \times 3^{\mathrm{n}+1}}{15 \times 3^{\mathrm{n}}}$, where $\mathrm{n} \in \mathbb{N}$.
4) $\mathrm{D}=2-5 \sqrt{\mathrm{x}^{2}}-\sqrt{(7 \mathrm{x}-2)^{2}}+\sqrt{(3-\mathrm{x})^{2}}$, where $\left.\left.\mathrm{x} \in\right]-\infty ; 0\right]$.

III- (5 points)

Given: $\mathrm{I}=[1 ; 3[, \mathrm{~J}=[4 ; 5]$ and $\mathrm{K}=3|\mathrm{x}-\mathrm{y}|+|3 \mathrm{x}-2 \mathrm{y}+8|$

1) Knowing that $x \in I$ and $y \in J$, frame $x-y$ and $3 x-2 y+8$.
2) Write K without the symbol of absolute value.

IV- (5 points)

In an orthonormal system ($0 ; \vec{i}, \vec{\jmath}$), consider the points $\mathrm{A}(1,2), \mathrm{B}(-1,3), \mathrm{C}(-1,-1)$, and $\mathrm{M}(\mathrm{x}, \mathrm{y})$.

1) Show that the three points A, B, and C form a triangle.
2) Find the coordinates of point M, knowing that $\overrightarrow{O M}=\overrightarrow{M A}+2 \overrightarrow{M B}-3 \overrightarrow{M C}$
3) Find the coordinates of point M, knowing that B is the centroid (center of gravity) of triangle AMC.
4) Let $\mathrm{M}(a,-2 a)$, where a is a real number. Determine a so that the three points M , A , and B are collinear
5) Consider the system $(A ; \vec{i}, \vec{\jmath})$. Let $D(-2,-3)$ be a point in the system. Calculate the coordinates of D in the system ($0 ; \vec{i}, \vec{\jmath}$).

V- (5 points)

1) Solve in \mathbb{R}, each of the following inequalities.
a) $\left(4 x^{2}-9\right)\left(x^{2}+4 x+4\right) \leq 0$
b) $\frac{\left(x^{2}+1\right)(x-1)}{2 x-6}<0$.
2) Deduce the solution of the system: $\left\{\begin{array}{c}\left(4 x^{2}-9\right)\left(x^{2}+4 x+4\right) \leq 0 \\ \frac{\left(x^{2}+1\right)(x-1)}{2 x-6}<0\end{array}\right.$

VI- (6 points)

A, B, and C are three points, in an orthonormal system $(0 ; \vec{i}, \vec{\jmath})$, such that: $(A B): y=\frac{-3}{2} x+\frac{11}{2},(A C):\left\{\begin{array}{l}\mathrm{x}=3 \mathrm{t}-5 \\ \mathrm{y}=\mathrm{t}+2\end{array}\right.$ and the point $C(-5,2)$

1) Determine the coordinates of A , the point of intersection of the two lines $(A B) \operatorname{and}(A C)$.
2) Find the abscissa of point B, knowing its ordinate is 1 .
3) Write a system of parametric equations of line (OB).
4) Write a cartesian equation of line (AC).
5) Let (d) be a line of equation: $2 \mathrm{x}+\mathrm{ky}-1=0$, where k is a real number. Determine k in each of the following cases:
a) The slope of (d) is equal to 2 .
b) The line (d) is parallel to line (AC).

VII- (8 points)

ABCD is a rectangle. O is the meeting point of the diagonals $[\mathrm{AC}]$ and $[\mathrm{BD}]$. I and J are two points such that: $\overrightarrow{\mathrm{AI}}=\frac{1}{4} \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AJ}}=\frac{3}{4} \overrightarrow{\mathrm{AC}}$. M and N are the midpoints of $[\mathrm{DC}]$ and $[\mathrm{BC}]$ respectively.

1) Plot the two points I and J.
2)

a) Write each of the following two vectors $\overrightarrow{\mathrm{DI}}$ and $\overrightarrow{\mathrm{JB}}$ in terms of $\overrightarrow{\mathrm{AD}}$ and $\overrightarrow{\mathrm{AC}}$.
b) Deduce that the quadrilateral DIBJ is a parallelogram.
3) Prove that: $\overrightarrow{A C}+\overrightarrow{\mathrm{BD}}=2 \overrightarrow{\mathrm{BC}}$.
4) Prove that: $\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{DB}}=2 \overrightarrow{\mathrm{AB}}$.
5) Show that: $\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}=\overrightarrow{0}$. What do you conclude?
6) $\overrightarrow{\mathrm{W}}=\overrightarrow{\mathrm{HA}}+\overrightarrow{\mathrm{HM}}+\overrightarrow{\mathrm{HN}}$. Find the locus of point H when $\|\overrightarrow{\mathrm{W}}\|=3$

VIII- (11 points)

Remark: the four parts of this question are independent.

1) Verify each of the identities.
a) $\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\cos ^{2} x-\sin ^{2} x$
b) $\cot ^{2} x-\cos ^{2} x=\cos ^{2} x \times \cot ^{2} x$
2) Given $\sin \mathrm{a}=\frac{1}{5}$, where $\frac{\pi}{2}<a<\pi$.
a) Calculate $\cos a$ and $\tan a$.
b) Deduce the values of $\sin \left(\frac{5 \pi}{2}+\mathrm{a}\right)$ and $\tan \left(\frac{3 \pi}{2}-\mathrm{a}\right)$
3) Let $f(x)=\frac{4 \sin \left(\frac{\pi}{6}\right) \times \sin (13 \pi+x)+\sin (15 \pi-x)}{2 \cos \pi \times \cos (-9 \pi+x)+\sin \left(\frac{7 \pi}{2}+x\right)}$. Show that $f(x)=-\tan x$, then calculate $f\left(\frac{5 \pi}{4}\right)$.
4) Calculate: $\mathrm{F}=\cos ^{2}\left(\frac{7 \pi}{8}\right)+\cos ^{2}\left(\frac{5 \pi}{8}\right)+\cos ^{2}\left(\frac{3 \pi}{8}\right)+\cos ^{2}\left(\frac{\pi}{8}\right)$.

Bonus: The product $\left(1-\frac{1}{50}\right)\left(1-\frac{2}{50}\right)\left(1-\frac{3}{50}\right) \ldots \ldots \ldots\left(1-\frac{99}{50}\right)\left(1-\frac{100}{50}\right)$ is equal to a) $-1 ;$ b) 0 ; c) 1

