The Islamic Institution for Education \& Teaching

Al-Mahdi Schools
Grade 10
Name:


Mid-Year Exam

Mathematics Department
Scholastic Year: 2015-2016
Date: / 02 / 2016
Duration: 150 minutes
Mark: 30 points

## I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

| Questions |  | Proposed Answers |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  | A | $\mathbf{B}$ | $\mathbf{C}$ |  |
| $\mathbf{1})$ | Given: $\alpha=-\frac{27 \pi}{7}$ <br> The principal measure of $\alpha$ is: | $-\frac{\pi}{7}$ | $\frac{\pi}{7}$ | $-\frac{6 \pi}{7}$ |
| 2) | If we rationalize the denominator <br> of $\mathrm{K}=\frac{2}{\sqrt[3]{4}}$, then | $\mathrm{K}=\sqrt[3]{4}$ | $\mathrm{~K}=\sqrt[3]{2}$ | $\mathrm{~K}=\sqrt{2}$ |
| 3) | $\|-(\mathrm{x}+1) 2+2 \mathrm{x}\|=$ | $x^{2}-1$ | $1+x^{2}$ | $(x+1)^{2}+2 x$ |
| 4) | If $2 \leq \frac{1}{\mathrm{x}-1} \leq 3$, then | $\mathrm{x} \in\left[\frac{1}{4} ; \frac{1}{3}\right]$ | $\mathrm{x} \in\left[\frac{3}{2} ; \frac{4}{3}\right]$ | $\mathrm{x} \in\left[\frac{4}{3} ; \frac{3}{2}\right]$ |

## II- (3 points)

Given the two numbers $x$ and $y$ such that $|x-5| \leq 1$ and $1<\sqrt{y+1}<2$.

1) Show that $4 \leq x \leq 6$ and that $0<y<3$.
2) Bound $x+y$ and $x-y$. Deduce the boundaries of $x^{2}-y^{2}$.
3) Compare $\sqrt{x^{2}-y^{2}}$ and $\frac{1}{x^{2}-y^{2}}$.

## III- (4 points)

Simplify.

1) $A=\frac{\sqrt[3]{24} \times \sqrt[4]{64} \times \sqrt[4]{\sqrt[3]{6}}}{\sqrt[12]{6^{5} \times 2^{7}}}$.
2) $\mathrm{B}=(\sqrt[4]{5}-1)(\sqrt[4]{5}+1)(\sqrt[4]{25}+1)$.
3) $\mathrm{C}=\sqrt[6]{(\sqrt{3}-2)^{6}}+\sqrt[3]{(\sqrt{3}-2)^{3}}+|-2 \sqrt{3}-1|$.

## IV- (4 points)

1) Let $E=(2 x-1)(x+3)-(x+3)$.
a) Prove that $E=2(x+3)(x-1)$.
b) Let $F=\frac{E}{x+3}$, where $x \neq-3$. Simplify $F$, then solve the inequality $|F|>2$.
2) Solve the system of inequalities: $\left\{\begin{array}{l}\frac{x^{2}+9}{3-x}<0 \\ x^{2} \geq(2 x-1)^{2}\end{array}\right.$.

## V- (5 points)

Given, in an orthonormal system $(O ; \overrightarrow{1}, \vec{\jmath})$, the three points $A(2 ;-3), B(1 ; 4)$, and $C(3 ; 2)$ and the vector $\overrightarrow{A M}=(2 a-1) \vec{\imath}-(b-2) \vec{\jmath}$, where $a$ and $b$ are two real numbers.

1) Show that the three points $\mathrm{A}, \mathrm{B}$, and C form a triangle (non-collinear).
2) Find the coordinates of point $J$, the fourth vertex of the parallelogram ABCJ.
3) 

a) Prove that the coordinates of point M are $(2 \mathrm{a}+1 ;-\mathrm{b}-1)$.
b) Determine $a$ and $b$ so that $O$ is the center of gravity of triangle ABM.
4) Consider the point $E$ such that $E(4 \cos \alpha+2 ; 4 \sin \alpha-3)$, where $\alpha$ is real number.

Show that $\mathrm{AE}=4$.
5) Find the coordinates of A in the system $(\mathrm{C} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{J}})$.

## VI- (5 points)

Consider a parallelogram ABCD with $\mathrm{BC}=3 \mathrm{~cm}$, and $\mathrm{AB}=5 \mathrm{~cm}$.
E and F are two points in the plane such that: $\overrightarrow{\mathrm{CE}}=\frac{1}{3} \overrightarrow{\mathrm{CD}}$ and $\overrightarrow{\mathrm{AF}}=\frac{3}{2} \overrightarrow{\mathrm{AE}}$.

1) Draw the figure.
2) Show that $\overrightarrow{\mathrm{BF}}=\overrightarrow{\mathrm{CD}}+\frac{3}{2} \overrightarrow{\mathrm{AE}}$.
3) Show that $\overrightarrow{\mathrm{BC}}=\frac{2}{3} \overrightarrow{\mathrm{CD}}+\overrightarrow{\mathrm{AE}}$.
4) Deduce that the three points $\mathrm{B}, \mathrm{F}$, and C are collinear.
5) Consider the vector $\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{MD}}$, where M is any point in the plane.
a) Show that $\mathrm{BF}=4.5 \mathrm{~cm}$.
b) Deduce the locus of point $M$ if $\|\vec{V}\|=\|2 \overrightarrow{\mathrm{BF}}\|$.

## VII- (5 points)

## Remark: The two parts of this question are independent.

1) Let $\alpha$ be an angle such that $\frac{-\pi}{2}<\alpha<0$, with $\tan \alpha=\frac{-1}{2}$.
a) Calculate $\cos \alpha$ and $\sin \alpha$.
b) Calculate the value of the expression: $E=\tan \left(\frac{13 \pi}{2}+\alpha\right) \times \cos (117 \pi+\alpha)$.
2) Simplify each of the following identities.
a) $F=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}-\cos ^{2} x$.
b) $G=\sin (\pi+x)+\sin (8 \pi+x)-\sin (5 \pi-x)-\cos \left(\frac{3 \pi}{2}+x\right)$.

## Good work

