	IN HIS NAME	
The Islamic Institution for		Mathematics Department
Education & Teaching	Education & Teaching	
Al-Mahdi Schools		Date : / 02 / 2016
Grade 10	المرتب المستاي المرتب تالقليس مادون بعاد بون	Duration : 150 minutes
Name:	Mid-Year Exam	Mark: 30 points

I- (4 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, **with justification**, its correct answer.

Questions		Proposed Answers		
		Α	В	С
1)	Given: $\alpha = -\frac{27\pi}{7}$. The principal measure of α is:	$-\frac{\pi}{7}$	$\frac{\pi}{7}$	$-\frac{6\pi}{7}$
2)	If we rationalize the denominator of $K = \frac{2}{\sqrt[3]{4}}$, then	$K = \sqrt[3]{4}$	$K = \sqrt[3]{2}$	$K = \sqrt{2}$
3)	-(x + 1)2 + 2x =	$x^{2}-1$	$1 + x^2$	$(x+1)^2 + 2x$
4)	If $2 \le \frac{1}{x-1} \le 3$, then	$\mathbf{x} \in \begin{bmatrix} \frac{1}{4} ; \frac{1}{3} \end{bmatrix}$	$x \in \left[\frac{3}{2}; \frac{4}{3}\right]$	$\mathbf{x} \in \left[\frac{4}{3}; \frac{3}{2}\right]$

II- (3 points)

Given the two numbers x and y such that $|x - 5| \le 1$ and $1 < \sqrt{y + 1} < 2$.

- 1) Show that $4 \le x \le 6$ and that 0 < y < 3.
- 2) Bound x + y and x y. Deduce the boundaries of $x^2 y^2$.

3) Compare
$$\sqrt{x^2 - y^2}$$
 and $\frac{1}{x^2 - y^2}$.

III- (4 points)

Simplify.

1)
$$A = \frac{\sqrt[3]{24} \times \sqrt[4]{64} \times \sqrt[4]{\sqrt[3]{6}}}{\sqrt[12]{6^5 \times 2^7}}$$
.
2) $B = (\sqrt[4]{5} - 1)(\sqrt[4]{5} + 1)(\sqrt[4]{25} + 1).$
3) $C = \sqrt[6]{(\sqrt{3} - 2)^6} + \sqrt[3]{(\sqrt{3} - 2)^3} + |-2\sqrt{3} - 1|.$

IV- (4 points)

- 1) Let E = (2x 1)(x + 3) (x + 3).
 - **a**) Prove that E = 2(x + 3)(x 1).
 - **b**) Let $F = \frac{E}{x+3}$, where $x \neq -3$. Simplify F, then solve the inequality |F| > 2.

2) Solve the system of inequalities:
$$\begin{cases} \frac{x^2+9}{3-x} < 0\\ x^2 \ge (2x-1)^2 \end{cases}$$

V- (5 points)

Given, in an orthonormal system (O; \vec{i} , \vec{j}), the three points A(2; -3), B(1; 4), and C(3; 2) and the vector $\overrightarrow{AM} = (2a - 1)\vec{i} - (b - 2)\vec{j}$, where a and b are two real numbers.

- 1) Show that the three points A, B, and C form a triangle (non-collinear).
- 2) Find the coordinates of point J, the fourth vertex of the parallelogram ABCJ.
- 3)
 - **a**) Prove that the coordinates of point M are (2a + 1; -b 1).
 - **b**) Determine a and b so that O is the center of gravity of triangle ABM.
- 4) Consider the point E such that $E(4\cos\alpha + 2; 4\sin\alpha 3)$, where α is real number. Show that AE = 4.
- 5) Find the coordinates of A in the system $(C; \vec{i}, \vec{j})$.

VI- (5 points)

Consider a parallelogram ABCD with BC = 3 cm, and AB = 5 cm.

E and F are two points in the plane such that: $\overrightarrow{CE} = \frac{1}{3}\overrightarrow{CD}$ and $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AE}$.

- 1) Draw the figure.
- 2) Show that $\overrightarrow{BF} = \overrightarrow{CD} + \frac{3}{2}\overrightarrow{AE}$.
- 3) Show that $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{CD} + \overrightarrow{AE}$.
- 4) Deduce that the three points B, F, and C are collinear.
- 5) Consider the vector $\vec{V} = \vec{MD}$, where M is any point in the plane.
 - **a**) Show that BF = 4.5 cm.
 - **b**) Deduce the locus of point M if $\|\vec{V}\| = \|2\vec{BF}\|$.

VII- (5 points)

Remark: The two parts of this question are independent.

- 1) Let α be an angle such that $\frac{-\pi}{2} < \alpha < 0$, with $\tan \alpha = \frac{-1}{2}$.
 - **a**) Calculate $\cos \alpha$ and $\sin \alpha$.

b) Calculate the value of the expression:
$$E = \tan\left(\frac{13\pi}{2} + \alpha\right) \times \cos(117\pi + \alpha)$$
.

2) Simplify each of the following identities.

a)
$$F = \frac{1 - \tan^2 x}{1 + \tan^2 x} - \cos^2 x$$

b) G = sin(
$$\pi$$
 + x) + sin(8π + x) - sin(5π - x) - cos($\frac{3\pi}{2}$ + x)

Good work