

I- (5 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, **with justification**, its correct answer.

Questions		Proposed Answers		
		Α	В	С
1)	The principal measure of $\frac{31\pi}{4}$ is	$\frac{\pi}{4}$	$-\frac{\pi}{4}$	$\frac{3\pi}{4}$
2)	If $ 1 - 2t \le 3$, then	$t \in [-1, 2]$	$t \in [-2, 1]$	$t \in [-1, +\infty[$
3)	If EFG is any triangle and I is the midpoint of [FG], then $\ \overrightarrow{EF} + \overrightarrow{EG}\ =$	EF + EG	2 ĒÌ	2 EI
4)	If $\vec{u} = 3\vec{AB} - 2\vec{AC}$ and $\vec{v} = 3\vec{AB} + 2\vec{BC}$, then the components of \vec{u} and \vec{v} in the system (A; \vec{AB} , \vec{AC}) are	ū́(3,−2) ṽ(3,2)	ū́(1,−1) ṽ(0,1)	ū́(3,−2) ṽ(1,2)
5)	Let x be a non-zero real number. which statement is true?	$\frac{2x}{x^2+1} \le \frac{2x-1}{x^2}$	$\frac{2x}{x^2+1} \ge \frac{2x-1}{x^2}$	$\frac{2x}{x^2+1} = \frac{2x-1}{x^2}$

II- (10 points)

Consider an equilateral triangle ABC. Let I be the midpoint of [BC] and P, Q, and G be three points defined by: $\overrightarrow{PB} + 3\overrightarrow{PC} = \overrightarrow{0}$, $\overrightarrow{QA} + 2\overrightarrow{QC} = \overrightarrow{0}$, and $\overrightarrow{GA} - \overrightarrow{GB} - \overrightarrow{GC} = \overrightarrow{0}$.

Part A

- 1) Show that $\overrightarrow{CP} = \frac{1}{4}\overrightarrow{CB}$ and $\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$.
- **2**) Show that $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AC}$.
- 3) Construct the three points P, Q, and G.
- 4) Show that $\overrightarrow{QG} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$ and $\overrightarrow{QP} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{12}\overrightarrow{AC}$.
- 5) Deduce that the three points Q, P, and G are collinear.

Part B

Consider the orthonormal system (I; \vec{i} , \vec{j}), where $\vec{i} = \vec{IC}$ as shown in the figure at right.

- 1) Show that the coordinates of A are $(0, \sqrt{3})$, then find the coordinates of the points B, C, P, Q, and G.
- **2**) Show that $\overrightarrow{\text{QG}}\left(-\frac{2}{3},-\frac{4\sqrt{3}}{3}\right)$ and $\overrightarrow{\text{PG}}\left(-\frac{1}{2},-\sqrt{3}\right)$.
- 3) Deduce that the three points Q, P, and G are collinear.
- 4) Let M(x , y) be any point in the plane.What relation must exist between x and y so that the two

lines (CM) and (AB) are parallel?

III- (6 points) *Remark: The three parts of this question are independent.*

- 1) Simplify $\frac{\sqrt[3]{4} \times \sqrt{3}}{\sqrt[3]{2^5}}$.
- 2) Let $E = (\sqrt{3 + 2\sqrt{2}})(1 \sqrt{2})$. Calculate E^2 , then deduce the simplest form of E.
- 3) Given the two real numbers a and b such that $a \in [2; 3]$ and $b \in [1; 4]$. Let $F = \frac{3a-b}{2a^2+b^2}$.
 - **a)** Frame 3a b and $2a^2 + b^2$.
 - **b**) Deduce that $\frac{1}{17} \le F \le \frac{8}{9}$, then order the three numbers F, F², and \sqrt{F} in increasing order.

IV- (5 points)

Given: A =
$$\cos\left(\frac{7\pi}{3}\right) + \sqrt{2}\sin\left(\frac{7\pi}{4}\right) - \sqrt{3}\cos\left(\frac{5\pi}{6}\right)$$

B = $\sin\left(x - \frac{9\pi}{2}\right) \times \cos(\pi + x) + \sin(7\pi - x) \times \cos\left(x - \frac{\pi}{2}\right)$
C = $3\sin\alpha + 3\cos\alpha - 2\tan\alpha - 2$

- **1**) Simplify A and B.
- 2) Simplify C, knowing that $2\sin^2 \alpha + \cos^2 \alpha = \frac{14}{9}$ and $\alpha \in \left[-\frac{\pi}{2}, 0\right]$.
- 3) Verify that A = B + C.

V- (4 points)

Remark: The two parts of this question are independent.

1) Solve the system of inequalities:
$$\begin{cases} \frac{(2-x)(-4x)}{x-1} < 0\\ (x-3)^2 \ge (x-3) \end{cases}$$

2) Let M = $\frac{2x-2}{(x-1)^2 + (3+2x)(1-x)}$. Solve the inequality | M | > 2.

Good work