IN HIS NAME

The Islamic Institution for Education \& Teaching
 Al-Mahdi Schools

Class: Grade 10

Mid-Year Exam

Mathematics Department
Scholastic Year: 2016-2017
Date: / 02 / 2017
Duration: 150 minutes

Name:

I- (5 points)

In the table below, only one of the proposed answers is correct. Write the number of each question and give, with justification, its correct answer.

Questions		Proposed Answers				
		A	B	C		
1)	The principal measure of $\frac{31 \pi}{4}$ is	$\frac{\pi}{4}$	$-\frac{\pi}{4}$	$\frac{3 \pi}{4}$		
2)	If $\|1-2 \mathrm{t}\| \leq 3$, then	$\mathrm{t} \in[-1,2]$	$\mathrm{t} \in[-2,1]$	$\mathrm{t} \in[-1,+\infty[$		
3)	If EFG is any triangle and I is the midpoint of [FG], then $\\|\overrightarrow{\mathrm{EF}}+\overrightarrow{\mathrm{EG}}\\|=$	$E F+E G$	$2 \overrightarrow{\text { EI }}$	2 EI		
4)	If $\vec{u}=3 \overrightarrow{\mathrm{AB}}-2 \overrightarrow{\mathrm{AC}}$ and $\vec{v}=3 \overrightarrow{\mathrm{AB}}+2 \overrightarrow{\mathrm{BC}}$, then the components of \vec{u} and \vec{v} in the system $(A ; \overrightarrow{A B}, \overrightarrow{A C})$ are	$\begin{gathered} \overrightarrow{\mathrm{u}}(3,-2) \\ \overrightarrow{\mathrm{v}}(3,2) \end{gathered}$	$\begin{gathered} \overrightarrow{\mathrm{u}}(1,-1) \\ \overrightarrow{\mathrm{v}}(0,1) \end{gathered}$	$\begin{gathered} \overrightarrow{\mathrm{u}}(3,-2) \\ \overrightarrow{\mathrm{v}}(1,2) \end{gathered}$		
5)	Let x be a non-zero real number. which statement is true?	$\frac{2 \mathrm{x}}{\mathrm{x}^{2}+1} \leq \frac{2 \mathrm{x}-1}{\mathrm{x}^{2}}$	$\frac{2 x}{x^{2}+1} \geq \frac{2 x-1}{x^{2}}$	$\frac{2 \mathrm{x}}{\mathrm{x}^{2}+1}=\frac{2 \mathrm{x}-1}{\mathrm{x}^{2}}$		

II- (10 points)

Consider an equilateral triangle ABC . Let I be the midpoint of $[\mathrm{BC}]$ and P, Q, and G be three points defined by: $\overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{0}, \overrightarrow{\mathrm{QA}}+2 \overrightarrow{\mathrm{QC}}=\overrightarrow{0}$, and $\overrightarrow{\mathrm{GA}}-\overrightarrow{\mathrm{GB}}-\overrightarrow{\mathrm{GC}}=\overrightarrow{0}$.

Part A

1) Show that $\overrightarrow{\mathrm{CP}}=\frac{1}{4} \overrightarrow{\mathrm{CB}}$ and $\overrightarrow{\mathrm{CQ}}=\frac{1}{3} \overrightarrow{\mathrm{CA}}$.
2) Show that $\overrightarrow{A G}=\overrightarrow{A B}+\overrightarrow{A C}$.
3) Construct the three points P, Q, and G.
4) Show that $\overrightarrow{\mathrm{QG}}=\overrightarrow{\mathrm{AB}}+\frac{1}{3} \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{QP}}=\frac{1}{4} \overrightarrow{\mathrm{AB}}+\frac{1}{12} \overrightarrow{\mathrm{AC}}$.
5) Deduce that the three points Q, P, and G are collinear.

Part B

Consider the orthonormal system (I; $\overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$), where $\overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{IC}}$ as shown in the figure at right.

1) Show that the coordinates of A are $(0, \sqrt{3})$, then find the coordinates of the points $\mathrm{B}, \mathrm{C}, \mathrm{P}, \mathrm{Q}$, and G .
2) Show that $\overrightarrow{Q G}\left(-\frac{2}{3},-\frac{4 \sqrt{3}}{3}\right)$ and $\overrightarrow{P G}\left(-\frac{1}{2},-\sqrt{3}\right)$.
3) Deduce that the three points Q, P, and G are collinear.
4) Let $\mathrm{M}(\mathrm{x}, \mathrm{y})$ be any point in the plane.

What relation must exist between x and y so that the two lines (CM) and (AB) are parallel?

III- (6 points)

Remark: The three parts of this question are independent.

1) Simplify $\frac{\sqrt[3]{4} \times \sqrt{3}}{\sqrt{\sqrt[3]{2^{5}}}}$.
2) Let $E=(\sqrt{3+2 \sqrt{2}})(1-\sqrt{2})$. Calculate E^{2}, then deduce the simplest form of E.
3) Given the two real numbers a and b such that $a \in[2 ; 3]$ and $\mathrm{b} \in[1 ; 4]$. Let $\mathrm{F}=\frac{3 a-\mathrm{b}}{2 a^{2}+\mathrm{b}^{2}}$.
a) Frame $3 a-b$ and $2 a^{2}+b^{2}$.
b) Deduce that $\frac{1}{17} \leq \mathrm{F} \leq \frac{8}{9}$, then order the three numbers $\mathrm{F}, \mathrm{F}^{2}$, and $\sqrt{\mathrm{F}}$ in increasing order.

IV- (5 points)

Given: $A=\cos \left(\frac{7 \pi}{3}\right)+\sqrt{2} \sin \left(\frac{7 \pi}{4}\right)-\sqrt{3} \cos \left(\frac{5 \pi}{6}\right)$
$B=\sin \left(x-\frac{9 \pi}{2}\right) \times \cos (\pi+x)+\sin (7 \pi-x) \times \cos \left(x-\frac{\pi}{2}\right)$
$\mathrm{C}=3 \sin \alpha+3 \cos \alpha-2 \tan \alpha-2$

1) Simplify A and B.
2) Simplify C , knowing that $2 \sin ^{2} \alpha+\cos ^{2} \alpha=\frac{14}{9}$ and $\left.\alpha \in\right]-\frac{\pi}{2}, 0[$.
3) Verify that $\mathrm{A}=\mathrm{B}+\mathrm{C}$.

V- (4 points)

Remark: The two parts of this question are independent.

1) Solve the system of inequalities: $\left\{\begin{array}{l}\frac{(2-x)(-4 x)}{x-1}<0 \\ (x-3)^{2} \geq(x-3)\end{array}\right.$.
2) Let $M=\frac{2 x-2}{(x-1)^{2}+(3+2 x)(1-x)}$. Solve the inequality $|M|>2$.

Good work

